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Under the driving conditions, a typical geared system may be subjected to large

dynamic loads. Also, the vibration level of the geared system is directly related to the

noise radiated from the gear box. Accordingly, a good understanding of the steady

state dynamic behavior of the system is required in order to design reliable and quiet

transmissions. It is the main focus of this study with the scope limited to a system

containing a spur gear pair with backlash and periodically time-varying mesh stiffness,

and rolling element bearings with clearance type non-linearities. The internal static

transmission error excitation at the gear mesh, which is of importance from high

frequency noise and vibration control view point, is considered in the formulation in

sinusoidal or periodic form.

A dynamic finite element model of the linear time-invariant (LTI) system is

developed. Effects of several system parameters, such as torsional and transverse

flexibilities of the shafts and prime mover/load inertias, on free and forced vibration

characteristics are investigated. Several reduced order LTI models are developed and

validated by comparing their eigen solutions with the finite element model results.

Using the reduced order formulations, a three-degree of freedom dynamic model is

developed which includes non-linearities associated with radial clearances in the radial

rolling element bearings, backlash between a spur gear pair and periodically varying

gear meshing stiffness. As a limiting case, a single degree of freedom model of the

spur gear pair with backlash is considered and mathematical conditions for tooth
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separation and back collision are defined. Both digital simulation technique and

analytical methods such as method of harmonic balance and the method of multiple

scales have been used to develop the steady state frequency response characteristics for

various non-linear and/or time-varying cases. Difficulties associated with the

determination of the multiple solutions at a given frequency in the digital simulation

technique have been resolved. The proposed formulation has been validated by

comparing the predictions with the results of two benchmark experiments reported in

the literature. Several key system parameters such as mean load and damping ratio are

identified and their effects on the non-linear frequency response are evaluated

quantitatively. Other fundamental issues such as the dynamic coupling between non-

linear modes, dynamic interactions between component non-linearities and time-varying

mesh stiffness, and the existence of subharmonic and chaotic solutions including routes

to chaos have also been examined in depth.
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CHAPTER I

INTRODUCTION

1.1. PROBLEM FORMULATION

Dynamic analysis of geared systems is an essential step in design due to two

reasons. First, under the driving conditions, a typical geared system is subject to

dynamic forces which can be large. Therefore, the prediction of dynamic loads,

motions or stresses is needed in developing reliable gear trains. Second, the vibration

level of the geared system is directly related to the noise radiated from the gear box. An

attempt in designing quiet gears requires a good understanding of the dynamic behavior

of the system and the gear mesh source. Accordingly, the main objective of this study

is to develop accurate mathematical models of a generic geared rotor-bearing system

shown in Figure 1 .la. Of interest here is to investigate several key modelling issues

which have not been addressed in the literature, such as system non-linearities and

time-varying mesh stiffness.

The generic geared system shown in Figure 1.1a consists of a single spur gear

mesh of ratio Vg=dg2/dgl, rolling element bearings, a prime mover driving the system

at Dsl speed and a typical inertial load. The system also includes other elements such

as couplings and flywheel. A discrete model of the system is shown in Figure 1. lb.

Here, shafts axe represented by discrete translational springs ks1 and ks2, translational

dampers Csl and Cs2, and torsional springs Ksl and Ks2. The gear mesh is represented

by a time-varying mesh stiffness kh([) and a non-linear displacement function fh
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Figure I.I. a) A generic geared rotating system, b) discrete model of geared rotating

system.



which includes gear backlash. Further, linear time-invariant (LTI) mesh damping ch is

considered here. The roiling element bearings are defined by a time-invariant radial

stiffness k b subject to a non-linear displacement function fb, and an LTI damping

coefficient %. The prime mover and load are modeled as purely torsional elements of

inertias Ip and IL, respectively. The mean rotational speeds llsl and fls2 and the

geometric end conditions are such that gyroscopic effects are not seen.

The generalized displacement vector {r:l(t)}, associated with the inertia elements,

consists of angular displacements 0 and transverse displacements g and y. The

goveming equation of motion for the non-linear, time-varying multi-degree of freedom

model can be given in the general form as

[M]{_"(t )} + [C]{q' (t)} + [K(t)]{ f(q(t))} = {F(t)} (1.1)

where [M] is the time-invariant mass matrix and {_(i)} is the displacement vector.

Here, damping matrix [C] is assumed to be LTI type, as the effect of the tooth

separation and time-varying mesh properties on mesh damping are considered

negligible; validity of this assumption will be examined later. The stiffness matrix

[K(i)] is considered to be time-varying, given by a periodically time varying matrix

[K(i)] = [K(_ + 27r / _h)] where _h is the fundamental gear mesh frequency. The

non-linear displacement vector {f(_(_))} includes the radial clearances in bearings and

the gear backlash, and the forcing vector _'P(t)} consists of both external excitations

due to torque fluctuations, mass unbalances and geometric eccentricities, and an

intemal static transmission error excitation.
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1.2. OBJECTIVES

Specific objectives of this study are given as follows; each chapter, written in the

journal paper style, deals with one major objective.

First, a dynamic f'mite element model of the linear time-invariant (LTI) system

given in Figure 1.1a is developed. Effects of several system parameters, such as

torsional and transverse flexibilities of the shafts and prime mover/load inenias, on free

and forced vibration characteristics are investigated. Three different reduced order LTI

models will be derived and the conditions under which these are valid will be

determined by comparing the eigen solutions with the finite element model results.

Development and verification of such a reduced order (with a very few degrees of

freedom) linear model is an essential step before the non-linear dynamic behavior is

analyzed [Chapter I].

Second, non-linear frequency response characteristics of a spur gear pair with

backlash are examined for both extemal and internal excitations. The internal excitation

is of importance from the high frequency noise and vibration control viewpoint and it

represents the overall kinematic or static transmission error. Such problems may be

significantly different from the rattle problems associated with external, low frequency

torque excitation. Two solution methods, namely the digital simulation technique and

the method of harmonic balance have been used to develop the steady state solutions

for the internal sinusoidal excitation. Difficulties associated with the determination of

the multiple solutions at a given frequency in the digital simulation technique have been

resolved as one must search the entire initial conditions map. Such solutions and the

transition frequencies for various impact situations are found by the method of

harmonic balance. Further, the principle of superposition can be employed to analyze

the periodic transmission error excitation and/or combined excitation problems
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provided the excitation frequencies are sufficiendy apart from each other. Predictions

are compared with the limited experimental data available in the literature [Chapter l]].

Third, non-linear frequency response characteristics of a geared rotor-bearing

system are examined. A three degree of freedom dynamic model is developed which

includes non-linearities associated with radial clearances in the radial rolling element

bearings and backlash between a spur gear pair; time-invariant gear meshing stiffness is

assumed. The bearing non-linear stiffness function is approximated for convenience

sake by a simple model which is identical to that used for the gear mesh. This

approximate bearing model has been verified by comparing steady state frequency

spectra. The applicability of both analytical and numerical solution techniques to the

multi degree of freedom non-linear problem is investigated. Proposed theory is

validated by comparing the results with available experimental data. Several key

issues such as non-linear modal interactions and differences between internal static

transmission error excitation and extemal torque excitation are discussed. Additionally,

parametric studies are performed to understand the effect of system parameters such as

bearing stiffness to gear mesh stiffness ratio, altemating to mean force ratio and radial

bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion

used to classify the steady state solutions is presented and the conditions for chaotic,

quasi-periodic and subharmonic steady state solutions are determined. Two typical

routes to chaos observed in this geared system are also identified [Chapter m].

Fourth, this study extends the non-linear single degree of freedom spur gear pair

model of Chapter II and multi-degree of freedom geared rotor-bearing system model of

Chapter nl by including time-varying mesh stiffness kh(i), and investigates the effect

of kh(i) on the frequency response of lightly and heavily loaded geared systems.

Interactions between mesh stiffness variation and system non-linearities associated with
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gear backlash and radial clearances in rolling element beatings are also considered.

Resonances of the corresponding linear time-varying (LTV) system associated with the

parametric and external excitations are identified using the method of multiple scales.

Theoretical results are validated by available experimental results [Chapter IV].

1.3. DEVELOPMENT OF LINEAR TIME-INVARIANT MODELS

1.3.1. Literature Review

The study of geared rotor dynamics requires that the coupling between torsional

and transverse vibrations be included in the model. Although several modeling and

solution techniques such as lumped mass models and the use of the transfer matrix

method have been applied to rotor dynamic problems, the finite element method (FEM)

seems to be a highly efficient and accurate method for linear modeling. In one of the

early examples of FEM applied to a single rotor, Nelson and McVaugh [1] used a

Rayleigh beam finite element including the effects of translational and rotary inertia,

gyroscopic moments and axial load. Zorzi and Nelson [2] extended this by including

internal damping. Later, Nelson [3] developed a Timoshenko beam by adding shear

deformation to the Rayleigh beam theory. This model was further extended by

Ozguven and Ozkan [4] to include all possible effects such as transverse and rotary

inertia, gyroscopic moments, axial load, internal hysteretic and viscous damping and

shear deformations in a single model. However, none of the rotor dynamics models

described above can handle geared rotor systems, although they are capable of

determining the dynamic behavior of rotors which consist of shafts supported at several

points and carrying rigid disks at several locations.

Gear dynamics studies, on the other hand, have usually neglected the lateral

vibrations of the shafts and bearings, and have typically represented the system with a
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linear torsional model. Although neglecting transverse vibrations might be a good

approximation for systems having stiff shafts, it has been observed experimentally [5]

that the dynamic coupling between the transverse and torsional vibrations due to the

gear mesh affects the system behavior considerably when the shafts are compliant.

This fact directed the attention of investigators to the inclusion of transverse vibrations

of the shafts and the bearings in mathematical models. Lund [6] developed influence

coefficients at each gear mesh for both torsional and lateral vibrations, obtained critical

speeds and a forced vibration response. Hamad and Seireg [7] studied the whirling of

geared rotor systems supported on hydrodynamic bearings; torsional vibrations were

not considered in this model and the shaft was assumed to be rigid. Iida, et al. [8]

considered the same problem by taking one of the shafts to be rigid and neglecting the

compliance of the gear mesh, and obtained a three degree of freedom model to

determine the first three vibration modes and the forced vibration response due to the

unbalance and the geometric eccentricity of one of the gears. Later, Iida, et al.

[9,10,11] applied their model to a larger system which consists of three shafts coupled

by two gear meshes. Hagiwara, Iida, and Kikuchi [12] developed a simple model that

included the transverse flexibilities of the shafts by using discrete stiffness values, and

studied the forced response of geared shafts due to unbalances and runout errors. They

included the damping and compliances of the journal bearings and assumed a constant

mesh stiffness. Although most of these gear dynamics studies have discussed several

aspects of the problem, none of them has been able to represent a geared rotor-bearing

system completely since almost all of them have used one or more simplifying

assumptions such as rigid shafts, rigid bearings, rigid gear mesh etc. which may not be

applicable to a real system. L_ addition, these studies proposed lower order lumped

mass linear models.



Neriya, et al. [13] employed a dynamic finite element model which eliminates

many of the simplifying assumptions. They found the forced vibration response

of the system at the shaft frequency, excited by mass unbalances and runout errors of

the gears by using the modal summation. But they did not consider the high

frequency, internal, static transmission error excitation which has the major role in

noise generation. An extensive survey of linear mathematical models used in gear

dynamics analyses is given in a recent paper by Ozguven and Houser [14].

1.3.2. Mathematical Model

Here, we assume linear bearings and no tooth separations with time-invariant

mesh stiffness, i.e. [K] ;e [K(t)] and {f(_(_))} = {q(_)}. Then the corresponding LTI

form of equation (1.1) is:

(1.2)

Since many investigators have modeled the generic system shown in Figure 1.1 a as a

single degree of freedom model, our analysis uses it as a reference model to transform

the governing equation into the dimensionless form. Focusing only on the gear pair as

shown in Figure 1.2, the equation of motion of the semi-defmite system is given in

terms of the relative translational displacement __(i)= (dgl0g 1 - dg20g2) / 2

d2ff([) d'6(t) -- F(i)
mcl _ +Ch--'_+khU(t) = (1.3a)

where mcl is the equivalent gear pair mass defined as

8



Igl ,dgl

e(t) (
) ig 2 ,dg2

Figure 1.2. A single degree of freedom dynamic model.
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fD n --

_4-_gl+ 4Ig2 :

(1.3b,c)

First, we establish the dimensionless time t as t = O_ni. Second, we use the base circle

diameter of the pinion dgl and the equivalent mass m c1 as characteristic length and

mass parameters, respectively, to obtain the governing equations in the dimensionless

form as

[M]{_(t)} + [C]{q(t)} + [K]{q(t)} = {Fm } + {Fah(t)} + {FaT(t)}" (1.4)

where an overdot means derivative with respect to time t, and the dimensionless forcing

vector consists of a mean force vector { F m } and two time-varying components: a) high

_equency excitation due to the kinematic gear transmission error { Fah(t ) } and, b) other

excitations due to mass unbalance Ugi, geometric eccentricities (run-out errors) Egi and

prime mover and load torque pulsations Tgia(t), typically at low frequencies, are

combined into a single term {FaT(t)}.

1.3.3. (;ear Mesh Formulalion

The gear mesh is represented by a pair of rigid disks connected by a translational,

viscously damped spring along the pressure line which is tangent to the base circles of

the gears as shown in Figure 1.3. By choosing the Y axis on the pressure line and the

X axis perpendicular to the pressure line, the transverse vibrations in the X direction

10



Ygl Pinion

II ._.___ _gl + dglOtl / 2 +_gl sin Ot1

)e(t)

' kh Ch

_g2 +dg2Ot2 / 2+Cg2 sinOt2/

Figure 1.3. Model of gear mesh used in FEM.
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are uncoupled from both the torsional vibrations and transverse vibrations in the Y

n

direction. The dynamic mesh force Fhy at the mesh point in the Y direction can be

written in terms of the symbols given in Figure 1.3 from the rigid body dynamics

_ay(i) = Ch(Ygl + _0tl + £glflsl COS0tl -- Yg2 - _22 0t2

-Eg2_s2 COS0t2 - _Nglf_sl cos(Ngl0tl)) + kh(Ygl + _-_0tl

dg 2 a
+Eg 1sin 0tl -Yg2 - T ut2 - Eg2 sin0t2 - el sin(Ngl0tl ))

(1.5)

Here, only the fundamental component of the static transmission error _(_) is

considered, i.e. _(i)= 8sin(Nglflsli ) where Ng 1 is the number of teeth of gear gl.

Dynamic mesh force FhY also introduces moments _hgl and _hg2 about

instantaneous centers of the gears:

Thgl (i) = F'hy (t)(_-_ + I_gl cos 0tl ) (1.6a)

Thg2(t) = -Fhy (i)(_'_ + £g2 cos 0t2) (1.6b)

The total angular rotation 0ti of the i-th gear is 0ti(t ) = _si _ + 0gi(t ) , i=1,2. The

displacement vector can be decomposed into two parts as {9} = {V:ls} + {V:lh} where

{V:ls}= [gl,yt,01,....,gj,yj,0j,....,Xn,yn,0n], j= 1ton, j_: gl, j:_ g2 (excluding the

degrees of freedom of the nodes where the gear and pinion are mounted) and
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{_h} =[_gl,Ygl,0gl,_g2,Yg2,0g2], i=1,2. The coupling effect due to gear mesh is

only seen in the terms governed by {Fth} and the mesh stiffness [Kh], which

represents this dynamic coupling due to gear mesh is obtained from equations (1.5) and

(1.6) as

[Kh] - kh

0 0 0 0 0 0

0 1 dg---_-I 0 -1 dg2

2 2

0 dg---_-I d2---_l 0 dgl dgldg2
2 4 2 4

0 0 0 0 0 0

0 -1 dgl 0 1 dg2
2 2

0 dg2 dgldg2 0 dg2 d2----_2
2 4 2 4

(1.7a)

Since mesh viscous damping is proportional to the mesh stiffness,

In the overall force vector, non-zero terms correspond to displacements {qh } and are

given in the following form:

13



Ug l['121 sin Q'sl_ + F(t)l

Ugl_21 cosflslt

2Tglm
cos _'_slt + _l(i) + Tgla(t)

dg I Egl

Vg2a2 sinas2i - _l(i)

Ug2L"I22 cos _'_s2i

2Tglm
 g2ahcOSas2i-d2--aF,(i)- %2a(il

dgl

(1.8a)

FI (i) - c h (Eg2f_s2 cos fls2i - I_glflsl cos flsli + _ Nglflsl cos(N glflsl i))

+kh(Eg2 sin _'_s2[ - £gl sin ['_sli + e sin(NglL'2sli)) (1.8b)

where Tglm is the mean input torque.

1.3.4. Finite Element Formulation and Eigen.Value Problem

The f'mite element method has been employed in obtaining stiffness and mass

matrices of the system of equations (1.4). The shafts are discretized and five degrees of

freedom are defined at each node, only the axial motion being excluded. The stiffness

and mass matrices of each f'mite rotor element are derived by using the variational

principle [3,4,15]. The system overall matrices are obtained by combining element

matrices, dynamic coupling matrices due to gear mesh defined by equation (1.7),

assumed bearing damping values and stiffnesses, and the inertias of the gears and other

lumped inertia elements. Here, [M] is diagonal and positive definite and [K] is

symmetric and positive semi-definite. The equation describing the undamped free

vibration of the system is obtained from equation (1.4) as

14



[M]{/_(t)} + [K]{q(t)} = {0}. (1,9)

The assumed form of the solution {q(t)} = {qa } cos(tot + 0) is substituted into equation

(1.9) to obtain the standard eigen-value problem:

[K]{qa} = to2 [M]{qa}. (1.10)

The solution of equation (1.10) yield the eigen-vectors or modes {Vr} and associated

eigen-values or natural frequencies oar. Here, a torsional rigid body mode at to=0

exists since [K] is semi-def'mite.

1.3.5. Forced Vibration Response

The excitation given by equation (1.8) (for no torque pulsations, i.e.

Tgla (t)= Tg2a ({) = 0) is the sum of three sinusoidal terms at frequencies flsl, fls2 and

gear mesh frequency Ngl_sl

2
(1.11)

The steady state displacement response of the system due to this excitation is assumed

to be

2

{q(t)} = i_l [[_gi ]{Fgi } sin(_sit + _si) + [[_h ]{F_h} sin(Ngll:'_slt + _h) (1.12)
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where [_gi] i=l, 2 and [_h] are the dynamic compliance matrices in the frequency

domain corresponding to the excitation frequencies, t2sl , f_s2 and Ngl_sl ,

respectively.

i = 1, 2; (l.13a)

n

I d=,z, Iv'"v'J 
-- 0_2- (Ngl[).si + 2j_rNglI),siCOr

(1.13b)

{_r} represents the r-th mass matrix-normalized modal vector, n is the total number of

degrees of freedom of the system, j = ,fL-_, and _r is the damping ratio for r-th mode.

See Appendix A for the computer code GRD which uses the theory given here.

1.4. PARAMETRIC STUDIES

1.4.1. Modes of Interest

The generic system shown in Figure 1.1 is modeled by FEM to examine the

natural modes of a general linear geared rotor-bearing system and to study the effects of

several system parameters on the dynamics of the system. Two numerical data sets as

listed in Table 1.1 are used. Predicted natural frequencies and modes for Set A are

presented in Table 1.2. The response of the system to [(t) is also computed; Figures

1.4, 1.5 and 1.6 display the response in the Y and torsional directions at the pinion

location and the dynamic load to static load ratio at the mesh point dglF, hy /2Tmgl,

respectively. The system has no peak responses at the modes corresponding to motion

in the X direction since the excitation is applied in the Y (pressure line) direction, and
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Table 1.1 Numerical data sets of the system used for calculations.

Parameters Set At Set B

Igl, Ig 2 (kg-m 2) 0.0018, 0.0018 0.0097, 0.0097

mgl, mg 2 (kg) 1.84, 1.84 3.45, 3.45

dgl, dg 2 (m) 0.089, 0.089 0.135, 0.135

Ng I 28 30

k h 1.0xl08 1.0xl08

k b (N/m) variable rigid

Lsl L, Lsl R (m) 0.127, 0.127 variable

Ls2L, Ls2 R (m) 0.127, 0.127 variable

KI, K 2 (N-m/rad) -- variable

Ip, IL (kg-m 2) -- variable

dsl,o, ds2,o (m) 0.037, 0.037 0.04, 0.04

dsl,i, ds2,i (m) 0., 0.01 --

(m) 9.3x10 -6 --

t NASA Lewis Research Center gear test rig.
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Table 1.2. First 10 natural frequencies for set A of Table 1.1 (kb/kh=10).

Modal Modes of Natural Frequency tor Natural Mode

Index Interest Hz. Description

0 0

1 _I 581

2 687

3 _M 689

4 691

5 Vm 2524

6 3387

7 3387

8 3421

9 3421

torsional rigid body

first transverse-torsional coupled

X direction, transverse (driving shaft)

Y direction, transverse

X direction, transverse (driven shaft)

second transverse-torsional coupled

Y direction, transverse

X direction, transverse (driving shaft)

X direction, transverse (driven shaft)

Y direction, transverse

18
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the vibration in the X direction is dynamically uncoupled from the vibrations in the Y

and torsional motions, as described in the previous section. Therefore, the natural

modes corresponding to motions in the X direction can be eliminated when only _({)

excites the system. Accordingly, the following three typical modes are of special

importance:

I. First Transverse-Torsional Coupled Mocl) _I: This is the second mode listed

in Table 1.2 at 0.)I (581 Hz for the system considered). This mode corresponds to the

first peak in Figures 1.4 and 1.5 and its schematic shape is shown in Figure 1.7a.

Here, shafts move in opposite directions, gears vibrate in opposite directions also; but

transverse and torsional vibrations combine to yield small relative motion at the gear

mesh point. Therefore, dynamic loads at the mesh point are not large, resulting in no

peak in Figure 1.6 at _ while Figures 1.4 and 1.5 have peaks govemed by this mode.

II. Purely Transverse Mode _/II:- At this mode with natural frequency (Oil (689

Hz in Table 1.2), there is no torsional vibration and both shafts vibrate in phase in the

pressure line direction as shown in Figure 1.7b schematically. The relative

displacement at mesh point is zero since the gear ratio vg=l. Therefore, _(i) cannot

excite this mode as no peaks are observed in Figures 1.4, 1.5 and 1.6 at frequency (Oil.

IH. Second Transverse-Torsional Coupled Mode VIII_ The second and the

highest peak seen in Figures 1.4, 1.5 and 1.6 corresponds to this mode at 00ii I . As

seen from the mode shape illustrated in Figure 1.7c, both shafts and gears vibrate in

opposite directions, and transverse and torsional vibrations are additive at the mesh

point. Thus a large relative displacement at the mesh point is obtained, which results in
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a)first transverse-torsional coupled mode, _I

b) purely transverse mode, VII

c) second transverse-torsional coupled mode, • m

Figure 1.7. Typical natural modes of interest; see Table 1.2 for further details..
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a large peak in Figures 1.4, 1.5 and 1.6. This is the mode at which the coupling

between transverse and torsional vibrations is very strong.

These three modes are observed in all geared rotor systems and they play an

important role in governing dynamic response of the system excited by _(_).

Therefore, any accurate mathematical model of the geared rotor-bearing systems must

be able to predict these modes.

1.4.2. Effect of Bearing Compliances

In most cases, radial stiffness of a typical rolling element bearings kb is roughly

of the same order of magnitude as the gear mesh stiffness kh; in general it lies in the

range 0.1kh<kb<100k h. Therefore, bearing flexibility should be included in the

analysis. A parametric study for data set A of Table 1.1 has been conducted to

demonstrate the effect of kb on the natural frequencies and the frequency response of

the system excited by E(t). Figures 1.4, 1.5 and 1.6 show the response in the Y and

torsional directions and the dynamic mesh load respectively for kb values ranging from

0.1k h to 10kh, shaft stiffnesses are being kept the same. An increase in bearing

stiffness results in an increase in both natural frequencies and the peak amplitudes.

Above the range of k b, the bearing becomes very rigid when compared to the shaft

compliances and its effect on the system can be ignored.

1.4.3. Effect of Shaft Compliance

Data set B of Table 1.1 has been used to study the effect of shaft compliance on

the natural modes. The shaft length is varied and the corresponding c.or values are

predicted by FEM; Figure 1.8 displays this resuh. The first natural frequency _ does

not change considerably with varying shaft length, whereas _ and _1I are strongly
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Figure 1.8. Effect of the shaft length on the typical natural frequencies.
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dependent on the shaft length, especially at smaller lengths. Another observation from

Figure 1.8 is that ¢Oli and ¢thiI become very large for smaller shaft lengths and clearly

move beyond the range of the operational speed of most geared rotor systems. In this

case, the first coupled transverse-torsional mode _I can be assumed to be uncoupled

from these two modes.

1.4.4. Effect of Load and Prime Mover Rotary Inertias

As shown in Figure 1.1, the shafts are connected to a prime mover and a load at

either end through flexible torsional couplings. The following parameters need to be

considered: motor and load rotary inertias, torsional compliances of the flexible

couplings, and stiffnesses of the driving and driven shafts.

First, the motor and load are assumed to be connected to the shafts without

considering any torsional couplings in between. Figure 1.9 displays the variation in

¢oI, ¢ol/and o)iII with a variation in the prime mover inertia. Here, data set B of Table

1.1 with Lsi=0.04 m is used. COl/and _ are not affected and therefore, the inertias of

motor and load can be disregarded if the major concern is to predict these two modes.

However, o3I is strongly dependent on prime mover and load inertias.

Second, the load and prime mover inertias are fixed (Ip=5Igl) and the torsional

springs K 1 and K2, which represent flexible couplings and shafts are varied. Figure

1.10 shows the variation in ¢or with changing K 1 and K 2. Here COil and ¢o[iI are again

not affected, as expected. On the other hand, o_ is almost constant (which is nearly

equal to the value yielded by zero prime mover and load inertias) up to a point and, it

starts increasing with increasing K. This indicates that the motor and load are isolated

from the geared rotor system when the in-between torsional elements are compliant
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enough, which is the case in most practical systems. Under these circumstances,

motor and load inertias can be neglected in the analysis.

1.5. REDUCED ORDER LINEAR TIME-INVARIANT MODELS

In this section, three different reduced order analytical models of the geared rotor-

bearing systems shown in Figure 1.1 will be developed and the conditions and system

parameters at which these simple models can predict the dynamics of the system

accurately, will be discussed. The finite element model of Section 1.3 will be

employed as a reference model to check the validity.

1.5.1. Single Degree of Freedom Torsional Model of Gear Pair

As the simplest model, a single degree of freedom (SDOF) model of geared rotor

systems shown in Figure 1.2 is considered. The shaft and bearing flexibilities and the

motor and load inerfias axe not considered in this model. This model can only preclict a

single mode at a frequency o0n as defined in equation (1.3c) which corresponds to the

first transverse-torsional mode at ¢oI . Here, ¢Ol-Oe0n when shaft lengths Lsi-,0 and

bearings are very stiff. And, _ and e0ii I axe sufficiently beyond the operational speed

range and the variation in coI is assumed to be negligible with shaft length as shown in

Figure 1.8. Therefore, in some cases, the SDOF model of Figure 1.2 can be used to

represent the system provided these conditions axe met. For instance, for data set B of

Table 1.1 with Lsi=5 cm, a SDOF model can be utilized up to an operational rotational

speed of 6000 rpm which corresponds to the excitation frequency at 3000 Hz for

Ngl=30 teeth. As it is seen in Figure 1.8, only the first mode is observed and its

variation is not significant within 0._£1<3000 Hz and 0<Lsi._5 cm.
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1.5,2. Three Degree of Freedom Model

The SDOF model of Figure 1.2 is not adequate when the shafts and bearings are

compliant. To overcome this deficiency, a three degree of freedom (3-DOF)

transverse-torsional model as shown in Figure 1.11 a is developed. Equation 1.4 gives

the equations of motion with dimensionless mass [M], damping [C] and stiffness [K]

matrices and displacement vector {q} given as follows:

0 0][M] = mg I / mcl 0 ;

0 mg 2 /mcl

(I.14a)

[!iCh (I+ CbsI/ch)

[C]= _ 1 -I -Il-I

(I+ Cbs2 /Ch)

(1.14b)

1 1 -1 ]
[K]= I (l+kbs Ilk h) -I ;

-1 -1 (l+kbs 2/k h)

(1.14c)

{q}=[u, Ygl, Yg2] (1.14d)

Ogl dg2Og2 Ygi
, - -- i - 1,2. (1.14e,f)

u= 2 2dg 1 Ygi-dg 1,

Here, kbs I and kbs 2 are equivalent lateral stiffnesses representing shaft and bearing

flexibilities, and Cbs1 and Cbs2 are equivalent viscous damping values. This model can
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Figure 1.11. Reduced order analytical models of Figure 1.1; a) three degree of

freedom model, b) six degree of freedom model.
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accurately predict all three modes of interest as evident from Figure 2.8 and Table 1.3

where its predictions are compared with the results of FEM.

When the system is connected to the motor and load inertias, then the in between

torsional stiffnesses K 1 and K 2 should be compliant enough to be able to neglect the

effects of the motor and load inertia.s, as it is discussed earlier in Section 1.4.4. In

summary, the 3-DOF model shown in Figure 1.1 la can be used to describe the

dynamics of the geared rotor system when: a) the shafts and bearings are compliant and

provided the shafts are short such that higher order bending modes of the shafts are out

of the frequency range considered, and b) the torsional stiffnesses of the connections in

between the motor and load inertias and the gear box are sufficiently compliant.

1.5.3. Six Degree of Freedom Model

A six degree of freedom (6-DOF) model as shown in Figure l.llb can be

employed to represent the geared rotor-bearing system when the effects of the motor

and load are not negligible as mentioned in Section 1.4.4. Equations of motion are still

given by equation (1.4) and the dimensionless system matrices are defined as

[M]=_ I
mcl

-Ip/d21 0 0 0 0 0

0 I$1/d21 0 0 0 0

0 0 Ig2 / d251 0 0 0

0 0 0 IL/d21 0 0

0 0 0 0 msi 0

0 0 0 0 0 mg 2

; (1.15a)
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Table 1.3. Comparison of typical modes obtained by FEM and 3-DOF models for set

B of Table 1.1; Lsi/dgl--0.3.

Mode V

VI VII VIa

Displacement FEM/3-DOF FEM/3-DOF FEM/3-DOF

0g 1 -0.012/-0.011 -0.001/0.0 -0.210/-0.246

0g 2 0.012/0.011 -0.001/0.0 0.210/0. 246

Ygl 1.0/1.0 1.0/1.0 - 1.0/- 1.0

Yg2 -1.0/- 1.0 1.0/1.0 1.0/1.0
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1

[cl=

Cl CI 0 0

dg I 4 4

-symmetric -

(d _+ hVs c_a_=
gl 4 ) - d_l

C2

d]t

0 0

c_.k _ c_k

2 2

2 2

0 0

(ch + CbsI ) --Ch

(ch + Cbs2

(1.15b)

1

K1 Kl+k__.)
d_l 4

0 0

khVg
0

4

(_-_--22 + khvg K 2-)
K2

dgl

0 0

k__h_h _ k_.h_h
2 2

_khV8 khV.___£g

2 2

0 0

-symmetric - (k h + kbs 1) -k h

(k h + kbs 2)

(I.15c)

{q} =[Op, Ogl, Og 2, 0 L, Ygl, Yg2 ] (1.15d)

For data set B of Table 1.1 predictions yielded by the 6-DOF model are compared

with those by FEM as shown in Figure 2.9 and Table 1.4. Based on these results, it

can be concluded that the 6-DOF model is accurate enough to predict the natural modes

of the system. Accordingly, 6-DOF model must be employed when the effects of the

motor and load are not negligible.
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Table 1.4. Comparison of typical modes obtained by FEM and 6-DOF models for set

B of Table 1.1; Lsi/dgl=0.3, IFAgl=5.

Mode W

Displacement FEM/6-DOF FEM/6-DOF FEM/6-DOF

ep 0.079/0.079 0.002/0.0

eg I -1.0/-1.0 -0.005/0.0

eg 2 1.0/1.0 -0.005/0.0

0 L -0.079/-0.079 -0.002/0.0

Ygl 0.006/0.006 1.0/1.0

Yg2 -0.006/-0.006 1.0/1.0

-0.018t-0.013

1.011.0

-1.0t-l.0

0.018¢0.013

0.391 ¢0.451

-0.391 t-0.451
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1.6. CONCLUSION

In this chapter, a finite clement model to investigate the dynamic behavior of

linear time-invariant geared rotor systems has been developed. The transverse

vibration of the system associated with shaft and bearing flcxibilitics and the dynamic

coupling between the transverse and torsional vibrations due to gear mesh have been

considered. Natural modes of the system have been identified and forced vibration

response due to both low frequency external and high frequency internal excitations

have been determined. Reduced order analytical models of the geared rotor bearing

system have also been developed. Three different linear timc-invariant models (SIX)F,

3-DOF and 6-DOF) have been suggested to represent the geared system. By

comparing results with FEM predictions, it has been shown that such reduced order

linear models are reasonably accurate. Therefore these models will be extended in

Chapters II, III and IV in analyzing the effects of system non-linearities and time-

varying mesh stiffness.
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CHAPTER II

NON-LINEAR DYNAMIC ANALYSIS

A SPUR GEAR PAIR

OF

2.1. INTRODUCTION

2.1.1. Excitation Types and Backlash

The focus of this chapter is on the backlash non-linearity as excited primarily by

the transmission error between the spur gear pair. A gear pair is bound to have some

backlash which may be designed to provide adequate lubrication and eliminate

interference due to manufacturing errors. Backlash-induced torsional vibrations may

cause tooth separation and impacts in unloaded or lightly loaded geared drives. Such

impacts result in intense vibration and noise problems and large dynamic loads,

which may affect reliability and life of the gear drive [16,17]. Excitation mechanisms

can be grouped as follows:

A. External Excitations: This group includes excitations due to rotating mass

unbalances, geometric eccentricities, and prime mover and/or load torque fluctuations

[18]. Although mass unbalances and geometric eccentricities can be reduced through

improved design and manufacturing, torque fluctuations are not easy to eliminate

since they are determined by the characteristics of the prime mover (piston engines,

dc motors etc.) and load [19]. Such excitations are typicaUy at low frequencies _T

which are the first few multiples of the input shaft speed ['1s . Practical examples

include rattle problems in lightIy loaded automotive transmissions and machine tools

[19,20].
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B. Internal _x_itatiQr_; This group includes high frequency _h excitations

caused by the manufacturing related profile and spacing errors, and the elastic

deformation of teeth, shafts and bearings. Under the static conditions, all such

mechanisms can be combined to yield an overall kinematic error function known as

"the static wanmfissi_-i error" _({-) [17,18]. This error is defined as the difference

between the actual angular position of the driven gear and where it would be ff the

gears were perfectly conjugate [17,18,21-23]. In gear dynamic models, _(t-) is

modeled as a periodic displacement excitation at the mesh point along the line of

action [15,24-26] and its period is given by the fundamental meshing frequency

_h =N_2s where N is the number of teeth on the pinion. Practical examples

include steady state noise and vibration problems in automotive, aerospace,

industrial, marine and appliance geared systems.

2.1.2. Literature Review

Experimental studies on the dynamic behavior of a spur gear pair with backlash

started almost 30 years ago and still continue [27-29]. As one of the better examples

of such experiments, Munro [27] developed a lightly damped (damping ratio 4=0.02)

four-square test rig to measure the dynamic transmission error of a spur gear pair.

He used high precision gears with rigid shafts and bearings, and showed

experimentally that the tooth separation takes place when the mean load is less than

the design load. Dynamic transmission error versus speed curves were plotted to

illustrate the steady state response and the jump phenomenon. Kubo [28] measured

the dynamic tooth stresses using a similar set-up in order to calculate the dynamic
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factors. He also observed a jump in the frequency response of the gear pair with

backlash even though the test set-up was heavily damped (_0.1).

Such experimental studies, though limited in scope, have clearly shown that the

gear pair dynamics can not be predicted with a linear model - see Ozguven and

Houser [14] for a detailed review of the linear gear dynamic models as available in the

literature. Although most of the non-linear mathematical models used to describe the

dynamic behavior of a gear pair are somewhat similar to each other, they differ in

terms of the excitation mechanisms considered and the solution technique used. For

instance, a large number of studies have focused on the rattle problem in lightly

loaded geared drives which are excited by the low frequency external torque

excitations [30-35]. A few investigators have included the static transmission error

excitation in the non-linear models [24,35-37].

The gear backlash non-linearity is essentially a discontinuous and non-

differentiable function and it represents a strong non-linear interaction in the

governing differential equation. This issue has been discussed by Comparin and

Singh [33] and they have concluded that most of the solution techniques available in

the literature can not be directly applied to examine this problem. Most of the gear

dynamic researchers recognized this problem implicitly, and therefore employed

either digital or analog simulation techniques [19,24,29,35-38], For instance,

Umezawa et.al [29], Yang and Lin [32] and Ozguven and Houser [24] have solved a

one degree of freedom torsional model of the gear pair using numerical techniques.

Lin et.al. [38] included motor and load inertias in a three degree of freedom torsional

model. Kucukay [35] has developed an eight degrees of freedom model to include

the rocking and axial motions of the rigid shafts. In most of these studies, with the

exception of Umezawa's analysis [29] which did not include any backlash, a
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discontinuity hasbeenseenin the frequencyresponsecharacteristics. But many

investigators have typically joined two discrete points to show a broad jump in the

frequency response curve [24,35,38]. Some of these problems have been due to the

numerical simulation techniques which may not work or may result in misleading

answers ff not employed properly. Such difficulties have been found by Comparin

and Singh [33], Singh et al. [34] and Gear [39-40] but are yet to be resolved or

addressed by the gear dynamics researchers. Accordingly, one of the major

objectives of this chapter is to examine whether numerical simulation techniques can,

in fact, be used to predict the dynamic response completely, and what precautions one

must take to develop such a mathematical model. Since Comparin and Singh [33]

and Singh et al. [34] have examined the external excitation problem, in this chapter

we focus mainly on the internal excitation and see whether the numerical simulation

technique can be made to work for the prediction of the non-linear frequency

response characteristics.

A few researchers have attempted to obtain the analytical solutions for a gear

pair problem, based on the piece-wise linear techniques which divided the non-linear

regime into several linear regimes [41-43]. For instance, Wang [41,42] has used two

and three degree of freedom torsional models with backlash, and assumed that the

gear teeth are rigid and the driven gear has an infinite inertia. The governing

equations have been solved using the piece-wise linear technique. It should be noted

that the piece-wise linear technique gives only solutions for the equivalent linear

systems and one typically may have difficulties in combining such solutions [43].

Comparin and Singh [33] overcame these problems by employing the harmonic

balance method (HBM) and constructed analytical solutions for the non-linear

frequency response characteristics of a gear pair with backlash as excited by the
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external torque. In this chapter, we will use the same technique to examine the

internal excitation problem, and compare results with digital simulation and

experimental studies. Further literature review is included in subsequent sections.

2.2. PROBLEM FORMULATION

2.2.1. Physical Model

A two degree of freedom semi-def'mite model of the spur gear pair with rotary

inertias Ig I and Ig 2 and base circle diameters dg I and dg 2 as shown in Figure 2.1 is

considered here. The shafts and bearings are assumed to be rigid. The gear mesh is

described by backlash of 2b and by a time _variant mesh stiffness k h ;e kh(i )

when in contact and viscous damping ch. The equations of torsional motion of the

gear pair as shown in Figure 2.1 are

d20gl dglC h (dgl d0gl dg2 d0g2 d_ /
Igl_+ 2 2 dt 2 d]" dr"

dt

dgl (_ dg2 _ E(t'-)] = TgI(_" )+ "-'_"- _ 0gl-- --'_ 0g 2
(2.1a)

d2092 dg2Ch (dgl dOgl dg2 dog2 d_)
g2 ._2 2 2 d_" 2 d_ dt

dt

-"T" mOg---T-eg2- (2.1b)
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Figure 2.1. Gear pair model.
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- 2(/.) = I" + I"g2a (/.) are torqueswhere _'gl(t) = I"glm + l"gla (/.) and Tg g2m

on pinion and gear and f is a non-analytical function essentially describing the mesh

elastic force as shown in Figure 2.1. Here, output torque fluctuation Tg 2a(/.) will

be neglected to simplify the dynamic problem, i.e. T g2(/.) = 1"g2m" Equations

(2.1a) and (2.1b) can be reduced to one equation in terms of Tt(/.) which is defined

as the difference between the dynamic transmission error g(/.) and the static

transmission error [(/.).

d2_

mcl _ + Ch _ + khf(q(/))= Fm + FaT(i) - mc d-_ ;
Ot Ot

(2.2a)

dg I 1(i- ) dg 2_(t-) --g(i-) - _'(O = -T" 0g 2 0 g2(t--) -- E'(_) ; (2.2b)

+
4I

gl

mc2 = dg I
(2.2c,d)

Fm 2Tglm 2Tg2m . l_aT(_" ) =
- d = d '

gl g2

2mcTgla(t-)

m c2dgl

; (2.2e,f)

T(_(t-)) {_(tO -b;f(_(i')) = kh .= 0;
_(i') + b;

r_(tO> b

-b< r_(i') <b

_(i') < - b

(2.2g)
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where mcl is the equivalent gear pair mass, Fm is the average force transmitted

through the gear pair, FaT(t') is the fluctuating force related to the external input

torque excitation and f(_(/-)) is the nonlinear displacement function. Equation

(2.2a) is nondimensionalized by letting q(/') =_(i') / b, _n = _/kh/mcl ,

t = _nt" and _ = c h / (2mclean). Now, consider harmonic excitation for both

e(t') and FaT(t-) as e(t-)- 2"sin($D-ht +0h), PaT(t-)--_ aTSin(_"_T _- +0T)

where _2 h and _'_T are the fundamental excitation frequencies of internal

displacement and external torque fluctuations, respectively. Further, define

dimensionless excitation frequencies fl h = _-1h / Con a n d fl T-- _ T / _ n,

dimensionless external mean load F m = _ m / bk h' amplitudes of the dimensionless

internal (Fi(t)) and external alternating forces (Fe(t)) FaT-l_aT/bkh and

F a_ = _"/b and nonlinear displacement function f(q(t)) to yield the following

governing equation of motion.

q(t) + 2_cl(t) + f(q(t)) = P(t) (2.3a)

F(t)- Fro+ FaTsin(_Tt +0 T) +Fahf12h sin(flht +O h ) (2.3b)

q(t)- 1; q(t) > 1
f(_(t)) 0; - 1 < q(t) < 1

f(q(t)) - b - (2.3c)
q(t) + 1; q(t) <- 1
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2.2.2. Scope and Objectives

When only external forces excite the system,i.e. Fi(t)=0, equation (2.3a)

reducesto

_(t)+ 2_c_(t) + f(q(t)) - Fm+ Fe(t)- Fm+ FaT sin (f_Tt + _T ) (2.4)

This equation has been solved both analytically and numerically by Comparin and

Singh [33]. Conversely, no analytical solution is available when the system is

excited by internal static transmission error at the mesh frequency fl h which is

considerably higher than fiT" The governing equation is given by substituting

Fe(t)-_ in equation (2.3a); note that the external mean load Fm is not equal to zero.

2 sin(_h t+#h ) (2.5)di(t) 4- 2_Cl(t) ÷ f(q(t)) = F m ÷ Fi(t) = F m 4. Fahfl h

Both equations (2.4) and (2.5) include the clearance non-linearity. While

equation (2.4) represents the conventional representation of the vibro-impact problem

[33,34], equation (2.5) is more applicable to the clearance problems in built-up

assemblies where the excitation is generated by the kinematic errors. This chapter

focuses on the steady frequency response characteristics of equation (2.5) which

represents a gear pair with backlash as excited harmonically by the static transmission

error excitation _(/-) or Fall. Specific objectives of this chapter are as follows:

1. Solve equation (2.5) numerically to resolve various modeling issues such as

the existence of multiple solutions, subharmonic resonances and chaos.
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2. Construct analytical solutions to equation (2.5) using the harmonic balance

method (HBM) which has been applied successfully to solve equation (2.4) by

Comparin and Singh [33].

3. Compare digita/simulation and harmonic balance techniques and establish

the premises under which the jump phenomenon can be predicted.

4. Perform parametric studies in order to understand the effects of F m, Fah and
^

on the frequency response. Vary the force ratio F =Fm/Fah which is a measure of

the load on the gear pair and compare the dynamic behavior for lightly and heavily

loaded gears.

5. Validate analytical and numerical solution techniques by comparing these

with previous experimental studies [27,28].

6. Compare the frequency response characteristics of equations (2.4) and (2.5),

and also examine the possibility of finding overall response when both extemal and

internal excitations are applied simultaneously.

7. Consider the periodic static transmission

k

F(t)= F m + Fi(t)= F m + _ (jflh)2 Fahj
j=l

three (k=-3) harmonics axe included.

error excitation case, i.e.

sin (jflht + _bhj) ; only the first

2.3. DIGITAL SIMULATION

Clearance or vibro-impact problems in single degree of freedom systems have

been examined by a number of investigators whose formulations are similar to

equation (4) - see Comparin and Singh [33] for a detailed review. Moreover, Shaw

and Holmes [43] and Moon and Shaw [44] have considered an elastic beam with one

sided amplitude constraint subject to a periodic displacement excitation, and have

46



shownexperimentally and numerically that the chaotic and subharmonic resonance

regimes exist. Whiston [45-47] has investigated the non-linear response of a

mechanical oscillator preloaded against a stop. He has solved the system equation for

harmonic excitation by digital simulation and studied the existence and stability of the

subharmonic and chaotic responses and the effect of preload on chaos. Similarly,

Ueda [48] has solved the Duffing's equation, _ + 2_Cl + q3 = F sin t, numerically

and defined the regions of different solutions on a _ versus F map. According to

him, the existence of harmonic, subharmonic and chaotic responses depends on

values of 4 and F, and multiple steady state solutions typically exist. Thompson and

Stewart [49] have reviewed the available literature, with focus on the Duffing's

equation. It should be noted that equation (2.5) is different from the non-linear

differential equations considered by the above mentioned studies. Therefore,

equation (2.5) must be studied in depth as the results of the other non-linear equations

may not be directly applicable to our case.

First, we solve the governing non-linear differential equation (2.5) numerically

using a 5th-6th order, variable step Runge-Kutta numerical integration routine

(DVERK of IMSL [50]) which is suitable for a strongly non-linear equation

[33,39,40]. Second, we investigate the existence of chaos and subharmonic

resonances. Since the steady state response of the system due to the sinusoidal

excitation is of major interest, it is necessary to run the numerical program for a

sufficient length of time. The number of cycles of the forcing function required to

reach the steady state depends on 4.
A

A lightly loaded system (F=Fm/Fah=0.5) with low damping (4--0.02) is

considered as the first example case. For Fm=0.1 and Fah=0.2, the response q(t) is

computed over the frequency range 0 < fl h < 1.5. Figure 2.2 shows phase plane
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plots el(t) vs. q(t) for different _h values. For £_h=0.3, all transients converge to

one periodic solution at the fundamental frequency £_h of the forcing function

irrespective of the initial conditions q(0) and el(0) • Therefore, it is called a "period-

one, tp " attractor where tp=2g/i"l h. But, in the case of flh---O.5, three coexisting

period-one attractors have been found as shown in Figure 2.2. Here, q(0) and Cl(0)

define three steady state limit cycle solutions. For all initial conditions given by

- 2 < q(0 ) < 2 and - 2 < Cl(0 ) < 2, a map of the domains of attraction for each

steady state solution is obtained in the map in Figure 2.3. If a smaller increment is

used for the initial conditions, a f'mer resolution will be obtained. Hence each phase

plane plot shown in Figure 2.2 is strictly governed by a subset of the initial

conditions. Similarly, two period-one attractors are found at flh=0.6. At flh=0.7 ,

besides two period-one tp attractors, two more solutions of period 3tp exist, i.e.

period-three attractors. But only a period-two 2tp attractor is seen when flh=0.8.

Within the range 1. 0 < £_ h _ 1. 5, non-periodic, steady state or chaotic response is

observed. Figure 2.4 shows the chaotic time history and the Poincare map (strange

attractor) at D.h=l.0. These results are qualitatively, but not quantitatively, similar to

the studies reported on the Duffing's equation [48,49] and clearance non-linearity

(equation (2.4) type) [33].

It is concluded that the subharmonic response of period ntp provided n ;_ 1 and

the chaotic response (tp _ .o) are seen in the gear pair only for a certain set of

^
parameters Fro, F, _ and fl h. It must also be noted that the multi-solution regions

are strongly dependent on the choice of q(0) and el(0). Only one steady state

solution can be found via digital simulation when only one set of initial conditions is

chosen at a given fZh, and the rest of the steady state solutions are not predicted. This
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results in an incomplete frequency response description. These issues will be

discussed further in Section 2.5.

^
A heavily loaded system with F =2, Fm=0.1 and the same amount of damping

4=0.02 is considered as the second example case. Figure 2.5 shows the phase plane

plots for the same values of fl h which are used in the first example case. Unlike the

f'u'st example case, no chaotic responses are found here. All of the solutions are

period-one tp type for all flh<l.0 and Figure 2.6 shows the typical domains of

attraction at f_h=0.6. However, within the range 1. 0 < fl h < 1. 5, one period-two

A

attractor co-exists with the period-one orbit. Hence the force ratio F determines the

existence of the chaotic and subharmonic responses. To illustrate this point, consider

A

chaos shown in Figure 2.4. As F and _ are increased, significant changes in the

response are observed in Figures 2.7 and 2.8. A transition from the chaos to a

period-two, and then to a period-one steady state solution is seen when _ is

increased from 0.75 to 1.0 and then to 1.5. Similarly, an increase in _ to 0.05

reduces chaos to a period-eight attractor, which then bifurcates to a period-two orbit

at _--0.1 as shown in Figure 2.8. Since most real geared systems are heavily loaded

^
with a high F, chaotic and subharmonic responses should not be seen under the

normal driving conditions. This issue will be discussed again in section 2.6.

2.4. ANALYTICAL SOLUTION

An approximate solution for equation (2.5) is constructed using the harmonic

balance method (HBM). Assume that q(t) = qm + qa sin(flht + #r) where qm and qa

are mean and alternating components of the steady state response, and # r is the

phase angle. Here, higher harmonics of the response are not included in the analysis.
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The quasilinear approximation to the nonlinear function f(q) with the excitation

2
F(t) = F m + Fi(t) = F m + Fahfl h sin (fl ht + ¢ph ) is in the form [33,51]

f(q) =Nmqm + Naqa sin (f'_ ht +Or) + Naqa COS(flht +(_r) (2.6)

where the describing functions N m, N a and N_ are defined as:

2_

Nm _ 1 Sf(qm + qa sin _0)dtp ; (2.7a)
2_:qm 0

2_

1 Sf(qm +qa sin (p)sin q)cl_o ; (2.7b)
Na- /l:qa o

2_

Na*- gqal o'If(qm+q'sin _0)cosq_dtp; tp=flht+0 r . (2.7c,d)

Equation (2.3b) is substituted into equations (2.7a), (2.7b) and (2.7c) to obtain

Nm= 1
qa 1

2qm[g(y+)-g(Y-)] ; Na= 1- _[h(_'+)+h()'-)] ;(2.Sa,b)

1 + qm (2.8c,d)
N_ = 0 ; _/+ - qa

where
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g(y) = "/+ - ;

I
(2.8e)

°1 (sm-1 ;
y<-I •

y>l

(2.8f)

Comparin and Singh [33] used tnmcated series expansions for functions g(y) and

h(y) given by equations (2.8e) and (2.80. They stated that the error involved in

using truncated series is within 6 percent when only the frost two terms are considered

with the coefficient of the second term adjusted to yield the actual value for y = 1.

Using the same approach, one gets

g(Y)---2(I+(-_)Y2); h(Y)---_'_-'(Y-('-_)Y3); ,_S1 (2.9a,b)

and obtains the following frequency response by substituting equations (2.6) into

equation (2.5) and equating the coefficients of like harmonics:

2
Fah_ h

qa=_( 2 ;N a-a2h) +(2_ah) 2

e m

)qm = Nm (2.10a,b)

( 2_12h )
Or = O h - tan- 1 .... 2 (2.10c)

Na- _h
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Depending on the damping ratio _ and the parameters F m, Fall and f_ which

define the excitation, there are three cases at which different solutions are obtained:

(a) no impact (no tooth separation), (b) single sided impacts (tooth separation, but no

back collision), and (c) two sided impacts (back collision).

Case I: No Impact : The tooth separation (impact) is not observed in a geared

system if the displacement q(t) lies in the region q(t)>l all the time. This condition,

shown in Figure 2.9 as case I, can be described mathematicaJly as

Iqm +qal >1 and Iqm-qal >1 (2.11)

Then, for no impact region in which the conditions defined by equation (2.11) are

satisfied, the describing functions are given by

N m= l- _qm " Na = I • (2.12a,b)

Substitution of equations (2.12) into equations (2.9) yields the following governing

equations for no impact case

2
Fahfl h

qal = _/(1 _ _,./2h) 2 + (2_f/h)2 ;

qmI =Fro+ 1 ; (2.13a,b)

.( 2_n,. )-Chi=0p tan- . (2.13c)
l-K1
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Hence, when there is no tooth separation, the system is linear and the mean and

ahemating components of the response, qm and qa, are uncoupled from each other.

The transition frequencies from the no impact (linear) regime to the other non-linear

regimes where tooth separation occurs are found by substituting q a = [q m - 11 into

the equations (2.13a) and (2.13c) as

= + ...... -tFmJ J

1 Fa h 2

(2.14)

where _"_tl and i')t2 are the transition frequencies from no impact to single sided

impact regimes below and above resonance, respectively.

Case II: Single Sided Impact : Mathematically, the single sided impacts (tooth

separation without back collision) are observed if

qm +qa > 1 and qm- qal < 1 • (2.15)

As illustrated in Figure 2.9 as case 11, the solution remains in the region q(t) > - 1.

The describing functions satisfying equation (2.15) are in the form

qau 1 [1 + h(y_)] (2.16a,b)
Nm= 1- 2qmi I [y+-g(y_)] ; Na= 1- _"
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Substitution of equations (2.10a) and (2.10b) into equations (2.16a) and (2.16b)

gives the describing functions for the single sided impact case:

qaII f2F /_-2_ 21 1

Nm= 1+ 2qml1- _'_'[1 +_,'-_--_-),'t'-)J- (y+)j ""
(2.17a)

Na = 21 _ 2(1- qm11) [1 _ (__)(__)1"_-q'_ (2.17b)

Then equations (2.9a), (2.9b) and (2.9c) with the describing functions given by

equations (2.17a) and (2.17b) define the response of the system in the single sided

impact region. In this case, it is hard to find closed form expressions for transition

frequencies from single sided to double sided impact regions. The validity of the

solutions, obtained by solving equations (2.9) and (2.17) iteratively, should he

checked. If the solution does not satisfy equation (2.15), then single sided impacts

are not seen at that particular frequency.

Case HI: Double Sided Impact : The double sided impact case exists ff qm and

qa are such that the following conditions are satisfied:

qa>ll-qml and qa>ll+qml (2.18)

Figure 2.9 (case IU) shows the double sided impact case at which qa is large enough

when compared to qm so that back collision is observed. The describing functions

62



for thiscaseareobtainedfrom equations(2.8a)and(2.8b)under the condition given

by equations (2.19):

2(re - 2)

7rqam

qmm (2.19a,b)
3

qa_

The solution for the double sided impact case is obtained by solving equations

(2.9) and (2.19) numerically. The validity of the solution, again, should be examined

by using the conditions defined by equation (2.18), as it is done in the single sided

impact case.

The solutions of all three regimes are combined to obtain the overall frequency

response of the gear pair. Figure 2.10 illustrates typical qa versus fl h and qm versus

t2 h plots. All three impact regimes are shown on these plots. Also we note the

frequency region where multiple steady state solutions are obtained.

2.5. COMPARISON OF TWO SOLUTION METHODS

First, we validate the approximate analytical solutions of equation (2.5) by

comparing predictions with the results obtained by digital simulation. Again, two

example cases (a heavily loaded system and a lightly loaded system) are considered

and the frequency response curves qa versus flh and qm versus fl h are generated.

^
Figure 2.11 shows the frequency response for the heavily loaded system with F =2,

Fro=0.1 and 4--0.05. Numerical and analytical results agree very well as both predict

amplitudes and the transition frequencies for case I (no impact) and case II (single

sided impact) regimes, and both show that the double sided impact solutions do not

exist. These results demonstrate that the analytical solutions are indeed correct for the
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heavily loaded system. Now consider the lightly loaded system as the second
^

example case with F=0.5, Fm=0.1 and 4=0.05. From Figure 2.12 we note that

while case I and case II solutions as yielded by both solution techniques are very

close to each other, case Ill regime is predicted only by the analytical expressions.

Why is case lXl not predicted by the digital simulation7 To answer this consider the

following:

a) In digital simulation, several sets of q(0) and /l(0) must be tried to find all

of the steady state solutions within a multi-valued region, for instance

0.6 "_ fl h _ 0.7 in Figure 2.11 and 0.4 _ fl h < 0.7 in Figure 2.12. When q(0)

and /l(0) are kept constant for each D,h or ff the steady state solution of the previous

frequency is used as the basis for the initial conditions for the next frequency

considered, only one of the solutions can be found while missing the other(s).

Figure 2.13 illustrates this point as the steady state solution of the previous frequency

is used here for the initial conditions at each fl b. Using this procedure, case U

solutions within the multi-valued regions are missed. Therefore, whenever digital

simulation is used to solve the equation of motion, dependence of the steady state

solutions on q(O) and el(0) must be taken into account to avoid the risk of obtaining

an incomplete frequency response description.

b) In the case of Figure 2.12, no initial conditions governed by case III are

found by the digital simulation within the range of initial conditions - 2 < q(0 ) < 2

and -2 < el(0)< 2 we have considered. Conversely, the analytical method

predicts this regime as the issue of initial conditions is irrelevant here. To illustrate
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A

this, first we consider the case of Figure 2.3 with F=0.5, Fro=0.1 , 4=0.02 and

flh--0.5. Figure 2.14a shows the domain of attraction governed by case III within

the range - 2 < q(0)< 2 and - 2 < tt(0)< 2 with a q(0) or tt(0) increment of

0.2. Here, almost half of the initial conditions considered define case Ill solutions.

Therefore the chance of having a double sided impact solution at flh=0.5 is

considerably high. Now, increase the damping to _--0.03. Once again a case 11I

regime is predicted analytically, but the number of initial conditions corresponding to

case IN is not sufficiently high like the case of 4--0.02. In the digital simulation, the

transient solution will converge to case I or case II solution unless the initial condition

corresponds to one of those shown in Figure 2.14b for case IZI. And the limiting

case is reached when _=0.04, while holding the other parameters the same; now no

initial conditions corresponding to case lIl are found. Obviously there might be

initial conditions, out of the range considered, which correspond to the analytical

results. Therefore the existence of case III solutions should be checked numerically

by searching the entire range of initial conditions as defined by the physical

considerations of the system.

2.6. PARAMETRIC STUDIES

Frequency response amplitudes, transition frequencies and the existence of

various impact regimes depend on F m, _ and 4. Therefore, a set of parametric

studies using analytical solutions of section 2.4 will be presented here; same results

can be duplicated by the digital simulation technique. First we examine the effect of
^

Fm and F while holding the damping ratio _ equal to 0.05. Figures 2.15 and 2.16

^
compare results for four different F values obtained by varying Fah for a given

^

Fro=0.1. Both gears maintain complete contact with each other when F is very
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A

large, say F=10 in Figures 2.15a and 2.16a. Consequently the dynamic system is

linear and the mean qm and altemating qa components of the torsional motion are

^
uncoupled as expected. However, for F =2, no-impact regime (case I) can not cover

the whole frequency range and a region around the resonant frequency is dictated by

the single sided impacts (case II). Away from the resonance, over the range given by

D,h>0.8 and D,n<0.7, solutions are single-valued, whether case I or case II solutions.

Conversely, near the resonance given by 0.7<f/,h<0.8 dual-valued solutions are seen

in Figures 2.15b and 2.16b. And sudden discontinuities are observed, i.e. a jump
A

up at 12h=0.g and a jump down at _2h=0.7. When F is reduced further, double

sided impact (case ILI) solutions start to appear in Figures 2.15c and 2.16c. Now, the

frequency range of interest can be divided into the following four regions: i) case I,

f_h<0.4; ii) case I and case III, 0.4<_h<0.6; iii) all three cases, 0.6<f2h<0.625; and

A

iv) only case II, 1)h>0.625. Region (ii) disappears at F >0.5.

A
Next, we vary F by changing F m for a given Fah =0.05. This set of

parameters does not yield any double sided impacts (Case m). Again, the tooth pair

A A

does not lose contact when F is large enough, say F210 and only the linear

A A

solutions exist as shown in Figure 2.17a. But when F is lowered to F=4, 2 and I,

the response is non-linear which is composed of cases I and II as shown in Figures

2.17b-d.

Next we examine the role of damping ratio _ on the frequency response in Figure

2.18, given Fro=0.1 and Fah=2. Double-sided impacts are found at a low damping

value 4=0.025 as shown in Figure 2.18a. When _ is increased to 0.05, case III

solutions no longer exist and case I and case II solutions define the frequency

response completely. The jump-up and jump-down transition frequencies in Figure

2. lgb are distinctly apart. With an increase in _, transition frequencies approach each
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other which narrows the dual-valued solution region. At 4=0.1, the frequency

response is single valued and the jump-up and jump-down transitions in Figure 2.18d

take place almost at the same frequency. Finally, like the linear systems, the damping

ratio also lowers the amplitudes in the non-linear resonance regime.

2.7. EXPERIMENTAL VALIDATION

Our analytical solutions of Section 2.4 will be compared with the experimental

results of Munro [27] who used a four-square test rig to measure the dynamic

transmission error g(/')of a spur gear pair. High precision spur gears with

manufacturing errors much smaller than tooth deflections were selected. Pinion and

gear were identical with 32 teeth, face width of 12.7 mm and diametral pitch of 4.

Tooth prof'de modifications were applied to obtain a minimum (but not zero) _({-) at

the design load of 3780 N. Other components of the set-up including shafts,

bearings and casing were made as rigid as possible in order to simulate the

configuration shown in Figure 2.1. g(/) was measured for a range of gear mesh

excitation frequencies under different mean loads Fm" Some of the key parameters

were not specified by Munro [27]. For example, it was stated that some additional

inertias were added to the gears to shift the primary resonant frequency within the

operational speed range, but the specific values of such inertias were not given. It

was also reported that the damping ratio _ varies with load "in a random manner".

Also, backlash was not measured or reported. Therefore, in our study, we estimate

the damping ratio (4--0.017,5) and the resonant frequency co n by considering the

design load case at which only linear behavior is seen; time-invariant mesh stiffness is

assumed in the model. The same value of _ is used at each discrete load Fm and a

backlash value of 2b=0.1 mm is assumed in our model.
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Figures 2.21

experimental

parameters.

Figures 2.19 to 2.22 compare measured and predicted frequency response of

the dynamic transmission error _(t-), on a peak to peak basis, at the design load and

at 1/4, 1/2 and 3/4 of the design load, respectively. As shown in Figure 2.19, both

analytical and experimental results indicate that teeth maintain contact at the design

load and hence the system behaves as a linear system in spite of the backlash. This is

because the static transmission error _(t-) is minimum at the design load which

results in a large force ratio Fm/F a, say 50. However, when the mean load Fm is

lowered to 3/4 of the design load which corresponds to a larger static transmission

error _(t-), tooth separation takes place. Consequently we note a jump in the

frequency response as shown in Figure 2.20 for both analysis and experiment. This

jump phenomenon is more noticeable at 1/2 and 1/4 of the design loads as shown in

and 2.22, respectively. Our theory matches very well with Munro's

results [27] in spite of the lack of knowledge of some relevant

As the second example case, the experimental results of Kubo [28] are

considered and compared with our theory. Experimental results and the relevant

system parameters are extracted from a recent paper by Ozguven and Houser [24] and

the excitation E(i-) is calculated using a spur gear elastic model [21]. Kubo

designed a four-square spur gear test rig which was heavily damped (4*'0.1). He

measured dynamic root stresses t_d and then estimated the dynamic factor D s as

Ds=t_d/t_ s where t_s is the static tooth root stress. However, in several other studies

[16] the dynamic factor is defined as the ratio of the dynamic mesh load P d to static

mesh load Fro, given by DL = _d / _m =Fd/Fro =(2_cl(t)+f(q(t))/F m.

Note that D L is equal to D$ when the change of the moment arm due to a change in

contact point is neglected. Figure 2.23 shows the envelope of dynamic factor D s
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measured for eight different teeth pairs and D L spectrum computed using the

analytical solutions of Section 2.4. Here, at most of the frequencies, our predictions

are not within the measured envelope, but the transition frequency and the amplitude

at the jump discontinuity are predicted accurately. There might be several reasons for

the discrepancy including the usage of D L instead of D S, the validity of the

computer model used to calculate _(t'), insufficient knowledge of some system

parameters such as profile modifications, and the assumptions made in developing

our theory such as the time invariant mesh stiffness. Therefore the experimental data

is not exactly analogous to our analytical predictions even though a satisfactory

agreement is found. Obviously our theory should be refmed in order to obtain a

better agreement with Kubo's data; for instance, time-varying mesh stiffness may be

included.

2.8. COMPARISON OF EXCITATIONS

2.8.1. Internal versus External Excitation

First, we assume that only one type of excitation exists at a time and compare

the frequency response characteristics of the system due to the internal static

transmission error sinusiodal excitation Fi(t) given by equation (2.5) with the external

sinusoidal excitation Pc(t) given by equation (2.4). The comparison is based on the

analytical solutions which are constructed in Section 2.4 for equation (2.5) and in

Reference [33] for equation (2.4). In the case of internal excitation, the amplitude of

2
the alternating force has a flh term which makes the alternating force amplitude

2
frequency dependent. This amplitude Fah[_ h is smaller than Fah for f_h<l and

greater than Fah when i2h>l. Hence the overall alternating force amplitude ratio

83



F m / F ahf_2h varies with f_h even though F = F m / Fah is kept constant. In the

^
case of external excitation, the force amplitude ratio F=Fm/FaT is frequency

independent.

Figures 2.24 and 2.25 compare the frequency responses for four values of

given Fm=0.1, f_h=D,T=f_ and _--0.05. When _ is sufficiently large, say _ >10,

only case I solutions corresponding to the no-impact (case I) exist. Accordingly both

excitations result in the linear system responses which are close to each other for

f2<1; but for f_>l there is a difference which grows with increasing frequency fi as

^
shown in Figure 2.24a. When F is reduced to 2, both case I and case II regimes

exist; the difference between two excitations is again significant at higher _2 as shown

in Figure 2.24b. The transition frequencies also differ, and a larger range of dual-

valued solutions is seen for equation (2.5). Case III solutions are witnessed at lower

A

values of F (1 and 0.5) as shown in Figures 2.25a and 2.25b. While equation (2.5)

always has a case I regime at low f_, equation (2.4) does not produce case I at
A

F --0.5. Another important observation from Figures 2.24 and 2.25 is that up to two

steady state solutions are seen in the extemal torque excitation case; conversely as

many as three solutions are found for the geared system excited by the static

transmission error.

2.8.2. Periodic or Combined Excitation

The approximate analytical solutions given in Section 2.4 axe constructed only

for a single harmonic internal excitation term _(t') or Fi(t). However, in the real

geared systems, [(t-) or Fi(t) is a periodic which can be represented by a fourier

series of the fundamental frequency _h" Therefore, it is necessary to consider the
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higher harmonics of Fi(t) besides the fundamental component which is already

included in the analysis. On the other hand, both external Fe(t) and internal Fi(t)

excitations may exist simultaneously. These two cases require that F(t) in equation

(2.3) be reformulated as follows

F(t)= Fro+ Fe(t) + Fi(t)= Fro+ FaT j sin (jflTt + 0Tj)
j=l

k 2

+ Y_ (Jnh) FahjSin(Jf_ht +0hi) (2.20)
j=l

In order to construct analytical solutions of this equation, we must investigate

the applicability of the principle of superposition, which would consider first each

excitation separately and then superimpose the corresponding responses to generate

the overall frequency response. Two cases are considered and the analytical results

based on the principle of superposition are verified through digital simulation.

Consider only the static transmission error excitation Fi(t) in equation (2.20)

3
with 3 harmonics, i.e. Fe(t) and F(t)= Fm + _ (jflh) 2 FahjSin(j_ht +_hj). The

j=l

amplitudes of the harmonics are selected to be Fahl=0.05, Fala2=0.02 and Fald--O.01,

and the mean force Fro=0.1. First each excitation component is considered separately

without paying any attention to the phase angles and the frequency responses are

obtained using digital simulation as shown in Figure 2.26. Second, all there

excitations are included simultaneously and the overall response is compared with the

previous solutions in Figure 2.26. The frequency response due to each harmonic of
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the excitation is very close to the overall solution around the resonance peaks

governed by that harmonic. When all of the solutions corresponding to each

harmonic are added algebraically by also considering the phase angles, the overaU

response improves as shown in Figure 2.27. This response is in the form

3

qa(t) = _ qajsin(f_ht +Ohj) where qaj is the altemating displacement when only

j=l

the j-th harmonic is considered. Figure 2.27 suggests that the principle of

superposition can be applied to a gear pair with backlash provided that the excitation

frequencies are sufficiently far apart from each other. In the case of periodic static

transmission excitation, this is valid as all excitation frequencies are at least f_h apart.

Now, the principle of superposition, which has been already verified by digital

simulation, can be used to obtain the approximate analytical solutions per Section 2.4

when the periodic forcing function is considered. Figure 2.28 shows the analytical

frequency response curve for Fro=0.1, Fahl=0.05, Fah2=0.02, Fah3=0.01 and

_=0.05. Here the jump discontinuity is seen only at the peak flhl governed by Fatal

since Fm/Fah 2 and Fm/Fah 3 are both sufficiently high so that no tooth separation

occurs at Oh2 and fib3, respectively. However, the jump phenomenon can also be

seen at the higher harmonics depending on the force ratios Fm/Fahj, j ;_ 1 and _ in

accordance with the results of Section 2.6. The same concept can be applied to the

superharmonic components of the external torque excitation of equation (2.20)

provided Fahj=0.

The principle of superposition is now extended to the case where both intemal

Fi(t) and external Fe(t) sinusoidal excitations exist simultaneously as given by

equation (2.3) provided that the excitation frequencies flh and O T are not close to

each other. In a real geared system, O h is much higher than D, T which implies that
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the principle of superposition should be suitable for this case. Figure 2.29 illustrates

the frequency response solutions due to the fundamental harmonic component of both

excitations for Fro=0.1, Fahl=FaTl=0.05, _=0.05 and by assuming that _h=2_T .

Here, the jump discontinuity is seen at two frequencies. However, when fl h --"_ T

or when one of the superharmonic peaks of Fi(t) coincides with the resonant peak

governed by Fe(t), the principle of superposition will no longer be applicable. In

such cases, we will use the digital simulation as the analytical interpretation of these

cases is yet to be explored.

2.9. CONCLUSION

This analytical study on the non-linear dynamics of a spur gear pair with

backlash as excited by the static transmission error has made a number of

contributions to the state of the art. First, difficulties associated with the digital

simulation technique have been resolved as multiple steady state solutions at a given

frequency can be found provided the entire initial condition map is searched. Second,

new frequency response solutions for the gear pair have been constructed using the

method of harmonic balance. "third, our mathematical models have been validated as

these compare well with two previous experimental studies and the key parameters

such as the mean load, mean to alternating force ratio, damping and backlash have

been identified. Forth, the chaotic and subharmonic resonances are observed if the

mean load is too small for a lightly damped system. Fifth, mathematical conditions

for tooth separation and back collision have been established which are compatible

with available measured data. Sixth, the periodic transmission error excitation case

has been analyzed using the method of harmonic balance in conjunction with the

principle of superposition. Finally, on a more fundamental note, our study enriches
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the current literature on the clearance non-linearity or vibro-impact systems as the

governing non-linear differential equation is different from the conventional single

degree of freedom system formulation.
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CHAPTER 111

NON-LINEAR DYNAMIC ANALYSIS A GEARED ROTOR-

BEARING SYSTEM WITH MULTIPLE CLEARANCES

3.1. INTRODUCTION

Mathematical modeling of geared rotor-bearing systems, being an essential step in

designing quiet and reliable power transmissions, has been the subject of numerous

studies over the past few decades. Most proposed dynamic models, as reviewed by

Ozguven and Houser [14], are essentially linear. However in several cases, it has been

experimentally shown that the geared systems exhibit non-linear behavior [27-29,35].

For instance, vibro-impacts are observed in a lightly loaded transmission with gear

backlash or loose bearings [30,31,34]. Accordingly, we must develop non-linear

mathematical model of the geared system - this is main focus of this chapter with

emphasis on the clearance type non-linearity in gears and rolling element bearings. In

Chapter H we had considered the single degree of freedom non-linear model of a spur

gear pair with backlash and investigated the effects of system parameters on the

vibrations and chaos excited by the static transmission error. Applicability of the

harmonic balance method and digital simulation technique to the solution of the steady

state response has been demonstrated, and difficulties associated with the digital

simulation technique when applied to such systems governed by stiff non-linear

differential equations have also been resolved in Chapter II.

Although there is a vast body of literature which considers a single degree of

freedom system with clearances, as reviewed earlier in Chapter II, studies on the multi

95



degree of freedom vibro-impact systems are very limited. For example, Galhoud et.al.

[52] considered a two degree of freedom translational system with a gap and found the

forced harmonic response using the piecewise linear technique. Winter and Kojima

[53] also used the same technique to study the geared systems with backlash.

However, it should be noted that the piecewise linear technique can not predict several

non-linear phenomena such as subharmonic and chaotic responses since it employs the

assumption that both impact and no-impact regimes "are repeated in an identical manner

once every period of excitation" [52]. Kucukay [35] developed an eight degree of

freedom model of a helical gear pair with backlash to include the rocking and axial

motions of rigid shafts and radial deflections of linear bearings. Lin et.al. [38] included

motor and load inertias in a three degree of freedom torsional model. Both of these

studies employed the digital simulation technique, but did not consider a number of

issues of primary concern in non-linear system such as the existence of multiple steady

state solutions, their dependence on initial conditions, subharmonic, quasi-periodic and

chaotic responses, etc. A few of these issues have been addressed by Singh et.al [34]

on the gear rattle problem. Comparin and Singh [54] have also used the digital

simulation, analog simulation and harmonic balance method to analyze coupled impact

pairs assuming that the modes are "weakly coupled", which allows the system to be

represented by a combination of single impact pairs. They included only the low

frequency external torque excitation and found the steady state frequency response at

the primary resonance. This solution has then been used to analyze the neutral gear

problem in more detail [55].

The other two groups of studies which consider multi-degree of freedom systems

with continuous non-linearities [56-61] and periodic excitations due to mesh stiffness

variations [29,62], will not be addressed here since their responses are significantly
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different from the clearance non-linearities as discussed by Comparin and Singh [33].

The literature on chaotic vibrations and roiling element bearings will be discussed later.

3.2. PROBLEM FORMULATION

3.2.1. Scope

Figure 3.1 shows the generic geared system considered in this study. It consists

of a spur gear pair mounted on flexible shafts which are supported by roiling element

bearings assembled in a rigid gear box. Since the shafts and bearings are compliant,

our single degree of freedom model of spur gear pair which assumes fixed gear centers

is obviously not suitable. Instead, a three degree of freedom non-linear model as

shown in Figure 3.2a is considered. It includes equivalent stiffness and damping

elements representing the shaft and the bearings. The corresponding linear model has

been found to be sufficiently accurate when compared with a f'mite element model for

eigen solutions provided that the gear dynamic response (mesh force, dynamic

transmission error, etc.) is of major concern. Gear backlash and radial clearances in

bearings are defined analytically. An approximate non-linear bearing model is also

proposed. Applicability of both analytical and numerical solution techniques to this

problem is investigated. Several key issues such as non-linear modal interactions and

differences between internal static transmission error excitation and external torque

excitation are discussed. Parametric studies are conducted to understand the effect of

system parameters such as bearing stiffness kbi to mesh stiffness k h ratio

1_= kbi/'k h , ahemating to mean force ratio Fa/F m and radial bearing preload to mean

force ratio Fb/F m on the non-linear frequency response. A criterion is used to classify

the steady state solutions, and the conditions for chaotic, quasi-periodic and

subharmonic steady state solutions are determined. Two typical routes to chaos
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Figure 3.1. Generic geared rotor-bearing system.
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observed on a geared system are also identified. Finally, our formulation is verified by

comparing predictions with measurements [27].

3.2.2. Physical Model and Assumptions

The three degree of freedom non-linear model of the geared rotor system with

gear inertias Ig I and Ig2, gear masses mg I and mg2, and base circle diameters dg I and

dg 2, as shown in Figure 3.2a, is considered here. The gear mesh is described by a

non-linear displacement function fh and viscous damping ch. Friction forces at the

mesh point are assumed to be negligible [18]. Thus the transverse vibrations in the

pressure line direction are uncoupled from the vibrations in the direction perpendicular

to the pressure line. Bearings and the shafts that support the gears are modeled by

equivalent elements with viscous damping coefficients Cbl and Cb2 and non-linear

springs defined by force-displacement functions fbl and fb2. The effects of the prime

mover and the load inertias are not considered assuming that these inertial elements are

connected to the gear box through soft torsional couplings. Further, we assume that

the system is symmetric about the plane of the gears and the axial motion (parallel to the

shafts) is negligible. Like the spur gear pair model of Chapter II, both low frequency

external excitation due to torque fluctuations and high frequency internal excitations due

to the static transmission error [(i) are considered in the formulation. Input torque

fluctuation is included, but the output torque is assumed to be constant, i.e.

Tgl(i) = Tglm + Tgla(i) and Tg2(i) = Tg2m. External radial preloads _ol and Fb2 are

also applied to both rolling element bearings.
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3.2.3. Equations of Motion

Equations of coupled transverse-torsional motion of the non-linear geared rotor-

bearing system shown in Figure 3.2a are

mgl Yg'l + Cbl Ygl + Ch(X' + Ygl - Yg2 - e') + kbl fbl(Ygl)

+kh fh(x+ Ygl- Yg2 -e) = -F_ol (3.1a)

mg2 Yg2 + Cb2 Yg2 - Ch(X'+ Ygl - Yg2 - e')+ kb2 fb2(Yg2)

-kh fh(x + Ygl- Yg2 -e)= F_b2 (3.1b)

mcl Ch(X'+Ygl-Yg2-e')+khfh(X+Ygl-Yg2 e)=Fm+FaT(t)(3.1c)

1

mcl= Id2..___[+ d22 I ;

[4Igl 4Ig2)

(3.1d,e)

Fm= 2%1m = 2%2m ; FaT(i') = mcl%la0)

dgl dg2 2Igl
(3.1f,g)

Here, ( )' means derivative with respect to time t, Ygi and 0g i are the transverse and

torsional displacements of the i-th gear (i=1,2), rncl is the equivalent gear pair mass,

Fm is the average force transmitted through the gear mesh and FaT(t) is the fluctuating

force related to the extemal input torque excitation. Equations (3.1a), (3.1b) and (3.1c)

are simplified further by def'ming below a new variable _(t) which is the difference

between the dynamic transmission error and the static transmission error _(t).
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Figure 3.2. Non-linear models of the geared rotor-bearing system; a) three degree of

freedom model, b) two degree of freedom model.
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_(i) = _(i) + y$1(i) - yg2(i)- E(i) ; (3.2a)

mP, Omg2

k-mcl mcl mclJ[ p"(i)J L0

o Chl[Yb(i)]
Cb2 - Ch_Yg2(t) I

o ch j[ p'(i),l

t
0 kh J[ fh(P) J Fm - mole' (i)+ FaT(i)

A dimensionless form of equation (3.2b) is obtained by letting

Ygi(i) = Ygi(i)/bc, P(i)=P(i)/bc, tOn = 3]kh/mcl, tobi = 4kbi/mgi 0=1,2) and

t = toni where b c is the characteristic length. Here, we consider harmonic excitation for

both E(i) and FaT(i) as E(i)--fisin(_hi +Oh), F.T(i) - FaT sin(_T i +OT) where _h

and _T are the fundamental excitation frequencies of internal displacement and external

torque fluctuations, respectively. Further, define dimensionless excitation frequencies

_"_h-" _h/On arld GT = _T/COn tO yield the following dimensionless governing

equation ofmotion.

1 oo]V.,,,,1 F,,o0 l OH_,_,_/+_/o _=-_23_'g2(t)_'
-I 1 Ij[ i_(t ) j Lo o _33J[ t)(t) J

lqi 0 lcl3/1fb2(Y.2) f {F(t));+ K22 - K23 =

0 1 j{ fh(p) J

(3.3a)
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{F(t)} = {F}m + {F(t)}i + {F(t)}e

I°l {:= + 0 sin(flht + _h ) +

[Fm J [Fah_2J FaT

' sin(flTt + OT );(3.3b)

_ii = Cbi ," _i3 = Ch , i=1,2; _33 = Ch
2mgitOn 2mgimn 2mcl_n

; (3.3c,d,e)

Kii = _v4;2 K i3=
m

tOn mgi

Fbi i=1,2;

Fbi- mgibct.O 2'
(3.3f,g,h)

= Fm . "e FaT = mclbFaTo)2 (3.3i,j,k)Fm mclbc_2 ' Fah = bc ;

where Fbi (i=1,2) and Fm, are the dimensionless components of the mean force vector

IF} m, and FaT and Fah pertain to the altemating extemal excitation {F(t)} e and internal

excitation {F(t) }i force vectors, respectively.

3.2.4. Modeling of Non-linearities

The non-linear displacement functions fbi(Ygi), i=l, 2 and fh(P) in equation

(3.3a), which represent the bearing radial and gear mesh stfffnesses, respectively,

should be defined explicitly before solving the non-linear equations. Here, fh(P) is,

detrmed as a clearance type dead space function with a backlash 2b h and linear time-

invariant mesh stiffness of one, in the dimensionless form
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F-, the i.-tl:ioli_.__..... i; .......... k_a_, rad:s_._ ........ ,_.. ' t' ,,,o, ' ,_ie,.-,-,_, '-..... ; .... - - _.,,c_. _ ,;e_s,-_s v,__-:p_ac._ment };g_

relationship on(_:_ _;_e -:l_;i'.c !oa, li_g _- ......... ' " " '

[:-i_ + \11

}; [ , _ 1 r :: (- {1}_; -- -- bb _ i cos(:{,; ": > '

(): - b_,. <vei < bbi (3.5)

, F'-, [i- I . ,_r_.

_': y__i < --bbi

w,he[e kii i-: )!_e r,_e_ ::¢_:_t:_.:_ .'_ ff.g:-->:, ".g _s _I_;-.,oigu__,a _,v._>;iri.,m<:f the r-th rolling

.... : _ <!earaa_ce of the i:+h _,,=_g-,- n is the power of the

non-linear force di:;pia.cemen: re!ati_m_hip (n=l.5 f_, bali be,'u'ings and n-10/9 for

roller bearings) and 1t is the total number of rolling elements m contact under loaded

conditions. Now the dimensionless bearing displacement .function fbi(Ygi) of equation

(3.3a) is obtained from equation (3.5} as

: 04 ORIGINAL PAGE IS
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1 YgiC°SCCr- bc J > bc

Fy.___i= ["/ bbi <Ygi < 'fbi(Ygi)= ktibc 0; bc _ .

/-r_lOYgilCOSOC r -bbi/n _c !bc j cosCCr; Ygi <-

(3.6)

Figure 3.3 shows the non-linear function fgi(Ygi) for a roller bearing with n=10/9,

kt=lxl08 N/ml0/9, total number of rollers Z=15 and bb--O.01 mm. In Figure 3.3, we

note almost a line:,: __"_tionship for large displacements, say Ygi>3bbi_c . Since the

degree of non-linearity is not very significant, equation (3.6) can be approximated by a

piece-wise linear function, similar to fh(P) given by equation (3.4), in order to simplify

the analysis considerably. Figure 3.3 also illustrates two linear approximations A and

B beyond the clearance for fbi(Ygi) in the form

fbi (Ygi) =

bbi. bbi

Ygi- b----_' Ygi > ---bc

bbi
O; bbi <Ygi <----

bc bc

bhi bbi
Ygi + _; Ygi < ---

bc bc

(3.7)

Note that both approximations A and B differ in clearances bbi A and bbi B but have the

same slope as the exact beating stiffness curve for Ygi>3bbi/bc, i=1,2, which is unity in

the dimensionless form. The validity of these approximations will be given later.
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Figure 3.3. Exact and approximate bearing deflection functions.
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3.3. CORRESPONDING LINEAR MODEL

As a limiting case, equations of motion of the corresponding linear system are

obtained by substituting fbi(Ygi) = Ygi, for i=1 and 2, and fh(P) = P in equation (3.3a)

1 1J_ ii(t ) I

0 _13 ][)'gl(t)]

0 _33_H l_(t) j

[KII 0 KI3 ][Ygl(t) /

+[_ K22--K23_Yg2(t'I=0 K33/[ p(t) J

{F(t)} (3.8a)

or in the matrix form with (q(t) } as the displacement vector

[M]{q(t)} + [C]{q(t)} + [K]lq(t)} = {F(t)} (3.8b)

where the mass [M], damping [C] and stiffness [K] matrices are all positive definite.

These matrices are asymmetric due to Ygl and Yg2 terms in the last row of matrix

equation (3.8a). For this linear system, the mean and alternating components of the

motion can be separated by letting Ygi(t)=Ygim+Ygia(t), i=1,2 and p(t)--pm+Pa(t).

Hence, equation (3.8a) is rearranged in terms of the alternating motion as

[M]lqa (t)l + [C]{qa (t)} + [K]lqa (t)l = {F(t)}i + {F(t)le (3.9)

The natural frequencies _r and the modes {Vr} are calculated by considering the

corresponding eigen-value problem. The forced harmonic vibration response is then
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obtainedby themodalexpansiontechniquein thefollowing form

3 {_I/r}{l]/r }T Fah_2h Sin(/k"_ht + ¢_h)

{qa(t)}=r=l y" [(_-_2h)+j_hCr]

3 {_tr }{_l/r}T F t"_2

+ Z [_(Or2 2 aT T_=1 - _'-_T)+ j_TCr ] sin(t-_Tt + _T );
j = x/-i (3.10a)

1 {1; r=sCr=_-_-_ {lltr}T[C]{_s}; 5rs= 0; r;es (3.10b)

Table 3.1 shows the natural frequencies of the three degree of freedom linear

system given by equation (3.9) and the ones found by finite element method for three

different l_=kbi/k h values with mgi=l kg, Igi=0.0008 kg/m 2, dgi=0.08 m,

_ii=0.01, _i3=0.0125, _33=0.05, i=l, 2 and kh=2xl08 N/m. As evident from Table

3.1, the three degree of freedom and finite element models [15] result in virtually the

same natural frequencies. This concludes that the three degree of freedom model is

indeed suitable for the geared-rotor bearing system. The first _I and third VIII natural

modes are coupled transverse-torsional modes while _1/ii is purely transverse type [15].

The second natural mode _tll is not excited by _(t) in this particular case, since the gear

ratio yg=dgJdg 1 is one for a symmetric pair. Therefore only two peaks should exist in

the frequency response spectrum which will be presented in Section 3.5.
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3.4. TWO DEGREE OF FREEDOM SYSTEM STUDIES

3.4.1. Equations of Motion

As a first example, we reduce the three degree of freedom transverse-torsional

semi-definite model to a two degree of freedom non-linear model. This is obtained by

clamping one of the gear centers as shown in Figure 3.2b, i.e. one of the transverse

displacements is assumed to be zero, say Ygl=0 which physically corresponds to a

system with one gear gl mounted on a rigid shaft which is supported by very stiff

bearings while the other gear g2 is assembled with compliant lumped shaft and

bearings. Equations of motion of the reduced order system are obtained from equation

(3.3a) by letting ygl=0.

1JL i (t) J JL p(t) j

o 1 Jt fb(P) J

The intent here is to simplify the physical system in order to investigate several

key issues in depth. Specifically, the objectives are to: a) justify using approximate

bearing models proposed in Section 3.2.4 by comparing the frequency responses

excited by _(t), b) show applicability of the harmonic balance method (I-IBM) to solve

non-linear system equations and compare its predictions with the results yielded by the

digital simulation technique, c) study interactions between system non-linearities for

both weakly and strongly coupled modes, and d) compare the steady state frequency

response spectra due to internal static transmission error excitation {F(t)}i and external

torque excitation { F(t) }e.
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3.4.2. Solution

Both analytical and numerical solution techniques which we have used

successfully for the spur gear pair problem are employed again to solve equation

(3.11). First, approximate analytical solutions are constructed using the harmonic

balance method [33,51 ] with only the bearing non-linearity assuming no gear backlash,

i.e. bh--O or fh(P)--P. For the harmonic excitation given by equation (3.3), we assume

p(t)=pm +Pasin(f_ht+_p); Yg2(t)=Yg2m +Yg2asin(f_ht+_g2) (3.12a,b)

where subscripts m and a represent mean and ahemating components of the steady state

response, and Op and #g2 are the phase angles. The non-linear bearing function is

approximated as

fb2 (Yg2) = NmYg2m + NaYg2a sin(_ht + 0g2 ). (3.13)

where Nm=Nm(Yg2m,Yg2a) and Na=Na(Yg2m,Yg2a) are the describing functions which

are given in Chapter II; these need to be defined for each impact regime (no impact,

single sided impact, double sided impact). Governing frequency response equations

are obtained by substituting equations (3.12) and (3.13) into equation (3.11) and

equating the coefficients of like harmonics:

+ ]ngFa 
Pa = ._- ;

(3.14a)
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A = (-a3K23AI + 4a4;22;23 + A2 A2 + 4a_;22A2)2

2 2+(-2a3G2K:3- m3 E3A + mh 33A + 8a G:;33) ; (3.14b)

AI = K:22Na -a2; A2 =l-a2 ; pro=Fro • (3.14c,d,e)

_¢223+ (2_b_2 3)2 ]1/2Yg2a = (K23AI _ 4_2_22_23)2 + (2.Qh_22K23 + 2f/h_23A 1)2
; (3 i4f)

Fb2 + K23P m

Yg2m = K22N m (3.14g)

The overall frequency response is obtained by solving equation (3.14) numerically for

each impact regime separately.

Second, the digital simulation technique is used to solve equation (3.11) for no

gear backlash. A 5th-6th order variable step size Runge Kutta numerical integration

algorithm [50], which has already been employed successfully in solving similar

problems, is used here. Figure 3.4 compares frequency response spectra obtained

using the harmonic balance method and digital simulation. Although both methods are

in a very close agreement for the case considered in Figure 3.4, one should be aware of

the following: (i) several problems may exist in the application of the numerical

integration method to the clearance type problems, hence caution must be exercised.

and (ii) the harmonic balance method is incapable of predicting chaotic and

subharmonic responses. Accordingly for further analysis, we will use only the digital

simulation technique.
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¢22=0.01, 1_= 1 ; a) Yg2a versus _h, b) Pa versus f_h-
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3.4.3. Validation of Non-linear Bearing Model

We examine the validity of two approximations for fbi(Ygi), as suggested in

Section 3.2.4 and shown in Figure 3.3, by assuming bh----0 and FAT--0. Equation

(3.11) is solved using the digital simulation technique, given Fm=l.0 , Fah=0.05,

Fb2--0, {22--0.01, {33=0.05, 423--0.0125 and ;c22=tc23=0.25, for three bearing models

(exact, approximations A: bb2A=bb2=bc, approximation B: bb2 B =1.63bb2=1.63bc).

Figures 3.5a and 3.5b compare Yg2a versus £"_h and Pa versus t'lh spectra for all three

bearing models. Both approximations are in a very close agreement with the exact

bearing model over the entire frequency range. The frequency and the amplitude of the

jump at the first peak is predicted accurately by both approximate models. Hence we

conclude that the approximate piecewise linear model can be used for a bearing without

losing any accuracy and the dynamic behavior is not sensitive to the minor variations in

bearing clearances bbi.

3.4.4. Non-linear Modal Interactions

Although both natural modes of the corresponding linear model are transverse-

torsional coupled modes, first mode WI is more dependent on transverse vibrations than

the second peak. Accordingly, it is expected that bearing non-linearities should affect

the f'trst peak directly while gear backlash should dominate the second peak in Figure

3.4. The validity of this claim depends on the nature of non-linearities and system

parameter values, as illustrated below.

First, a set of parameters is selected so that natural frequencies 0)1 and o_Ii of the

corresponding linear system are far away from each other: o)i----0.437 and o)iI=1.144

for _:22=0.25, _:23---0.25, _22=0.01, _23=0.0125, and 433=0.05. Frequency response

characteristics of the system with a forcing function, Fm=l.0 and Fah=0.5 are evaluated
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Figure 3.5. Comparison of frequency responses obtained by using the exact and

approximate bearing displacement functions given in Figure 3.3;

Fm=l.0, Fah=0.5, Fb2=0, bh=0, bb2=bc,_33=0.05, _23=0.0125,

_22=0.01, f_ = 1; a) Yg2a versus flh, b) Pa versus f_h.
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for the following three cases: a) no gear backlash, bh=0, non-linear bearing, b,b2=bc: b)

gear backlash, bh=10b o linear bearing, bb2--0; and c) gear backlash and non-linear

bearing with bh=10bb2=10b c. In the last pa'o cases, gear backlash is _aken to be i0

times the bearing clearance as it is a typical order of magnitude value for many geared

rotor systems supported by roller bearings. Figures 3.6 and 3.7 show the frequency

responses, Yg2a versus 1-_h and Pa versus O h respectively, for all three cases given

above; also superimposed is the linear frequency response curve for comparison

purposes. As shown in Figure 3.6a and 3.7a, a jump discontinuity is observed at the

first peak only for case a. in the case with only gear backlash non-lmearity, jump is

seen at the second peak while the first peak is continuous as shown in Figures 3.6b and

3.7b; this supports the claim of torsional mode dominance of the second peak. Finally,

when both non-linearities are included sinmltaneously, both peaks become non-linear

as shown in Figures 3.6c and 3.7c. For such a system, natural modes are essentially

"uncoupled" mad the inter.actions between component non-linearities are negligible. In

sun'unary, for case a of Figures 3.6a m-,d 3.7a, a linear model can be used to predict the

frequency responae beyond .coI , say t2h> 0.6. Similariy, a linear model could be

suitable for case b for tlh<0.8 as shown in Figures 3 6b and 3.7c. But for case c, a

linear model is suitable only tar away from the resonances.

Second, choose a dataset, say K22=0.64, K23=0.10 , _22=0.01, _23=0.0125, and

_33--0.05, such that two natural frequencies for the corresponding linear system are

brought closer to each other: o1=0.720, 01i=1.101. We again consider the same cases

a, b and c and compare the frequency response for Fro=2.0 and Fah=0.5 in Figures 3.8

and 3.9. Here, each non-linearity affects both modes, resulting in jumps at each peak.

Therefore, for this set of parameters, modes are considered to be "coupled" because of

dynamic interactions. Accordingly both non-linearities must be included
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Figure 3.6. Yg2a versus _')h plots for the case of uncoupled modes; a) no backlash,

non-linear bearings, b) backlash, linear bearings, c) backlash, non-linear

bearings; corresponding linear response.
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simultaneously in the dynamic model.

3.4.5. Internal versus External Excitation

Here we will apply only one type of excitation at a time and compare frequency

response characteristics of the system due to sinusoidal excitations IF(t)} i and IF(t))e

in equation (3.3a). Here, only the bearing non-linearity will be considered assuming

no tooth separation, bh=0. In the case of intemal excitation, amplitude of altemating

component is dependent on flh2 . Conversely, the amplitude of altemating external force

is frequency independent. Therefore, for a constant force ratio Fai/Fm, i=h,T, the

overall amplitude ratio _2hFah/F m for intemal excitation varies with excitation frequency

whereas the overall amplitude ratio FaT/Fro for extemal excitation remains constant

similar to the single degree of freedom model of Chapter I1.

Figures 3.10a and 3.10b compare Yg2a versus f_ and Pa versus _ spectra for

_t=_h=f_, Fm=l.0 , FaT=Fah=0.5, Fb2=0, 422=0.01, 423=0.0125, 433=0.05 and

_:22=_:23=0.25. As shown Figures 3.10a and 3.10b, both excitations yield the same

values at fl=l.0 since Fm/FaT=Fm/_2Fah at t_=l.0. For fl>l the intemal excitation

gives larger amplitudes than the external excitation, but the converse is true for _<1.

Another important difference is that for increasing fi, there are two jumps ( a jump-up

from the no-impact regime to the double sided impact regime at fl=0.3 and a jump-

down from the double sided to the single sided impact regimes at _=0.4) for the

external excitation; but the double sided impact regime is not seen in the intemal

excitation case and only one jump from the no-impact to the single sided impact is

found at f1=0.35.
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Figure 3.10. Comparison of frequency responses due to intemal static transmission

error and external torque excitation; Fm=l.0, Fah=0.5, Fb2=0, bh=0 ,

bb2=bc, _33=0.05, _23=0.0125, _22=0.01, lc = 1; a) YgEa versus _h, b)

Pa versus _h.
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3.5. THREE DEGREE OF FREEDOM SYSTEM STUDIES

3.5.1. Classification of Steady State Solutions

The steady state response results excited by internal force {F(t)}i at each

frequency _h have been categorized into the following five groups: (i) harmonic or

nearly harmonic solution at the same period tp=2_/_ h as that of forcing function

(period-one), (ii) non-harmonic period-one solution, (iii) subharmonic solution with

period ntp, n>l, (iv) quasi-periodic solution, and (v) chaotic solution (non-periodic,

n _ *_). The solution classification criteria are based on time histories, phase plane

plots, Poincare maps and Fourier spectra [66-71]. Figures 3.11 through 3.15 illustrate

different types of steady state solutions obtained from the three degree of freedom non-

linear model of Figure 3.2a. As shown in Figure 3.11, period-one, non-harmonic

solutions have a non-circular (non-elliptic) phase plane plot and repeat themselves at tp.

Figure 3.12 shows the time histories, phase plane plots and Poincare maps for a 2tp

subharmonic solution. In this case, the Poincare map consists of two discrete points.

Similarly, the 6tp (uhra)subharmonic response has six points on the Poincare map as

shown in Figure 3.13. Figure 3.14 illustrates a typical quasi-periodic response

(combination oscillations) which consists of two or more "incommensurate"

frequencies [66,67]. Quasi-periodic solutions result in closed orbits on the Poincare

map as shown in Figure 3.14c. The chaotic responses which are defined by a non-

periodic time history and as many points as the number of cycles considered in the

analysis on the Poincare map are illustrated in Figure 3.15. Figures 3.16a-e show the

FP-T spectra corresponding to the time histories given in Figures 3.11 to 3.15. For

period-one non-harmonic solution of Figure 3.11, corresponding spectrum has peaks at

me where co is the fundamental frequency and m is a positive integer, as shown in

Figure 3.16a. The ntp subharmonic solutions contain peaks at the frequencies mo_/n.
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For instance, spectra of the 2tp and 6tp solutions of Figures 3.12 and 3.13 have peaks

at frequencies mo_/2 and mo_/6 respectively in Figures 3.16b and 3.17a. The quasi-

periodic solution of Figure 3.14 consists of two fundamental frequencies oaI and o)2 at

a ratio to I/(o 2 --8 (an irrational number) and there are peaks at the combination

frequencies m(ol+r¢.o2, m,r =0, 5:1,+2 .... Finally, a characteristic broad band

spectrum is obtained in Figure 3.18 when the solution as shown in Figure 3.15 is

chaotic.

3.5.2. Routes to Chaos

In Chapter 1I, we had investigated the effect of mean load F m and damping _ on

chaotic response of a gear pair. It has been shown that chaos typically exists in

lightly damped and lightly loaded gear pairs. Now, two different routes to chaos for

the three degree of freedom system are illustrated.

A. Period-Doubling RouSe to Cha9# ; This consists of a sequence of bifurcations

of the periodic response to another periodic response with twice the period of the

original response due to a change in one of the system parameters [66, 68-70]. Figures

3.19 to 3.23 demonstrates this with a change in excitation frequency fl h given Fro--0.1,

Fah=0.05, Fbi----0 i=1,2, 4! 1=422=0.01,413=423=0.0125, 433=0.05, K 11=822=1.25,

_13=_:23=0.25, bc=b h and bbi---0, i=1,2. At f2h=1.500, with zero initial conditions,

we note a tp harmonic solution in Figure 3.19. This tp solution bifurcates to 2tp

subharmonic solution in Figure 3.20 when l) h is reduced to f2h=1.48. Furthermore at

f2h= 1.44 a 4tp solution is obtained which is further transformed to a 8tp response at

L'_h=1.402 as shown in Figures 3.21 and 3.22 respectively. At _"_h=1.4, however the

steady state solution becomes chaotic as evident from Figure 3.23. Also note from
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time histories, b) phase plane plots.
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spectra of Figures 3.19 to 3.23 that the single peak spectrum is transformed to a broad

band spectrum corresponding to chaos through period-doubling.

t_, Quasi-periodic Route to Chaos: In this case, instead of going through the

period doubling, the response undergoes a sequence of Hopf bifurcations with a

change in a system parameter. First a quasi-periodic response and finally a chaotic

response are obtained [66,71]; Figures 3.24-3.27 shows such a route to chaos. 3tp

solution at _h=l.1 bifurcates to a quasi-periodic solution when ['_h is increased to 1.2

as shown in Figure 3.24 and 3.25. A further increase in f_h to 1.3 yields a deformed

closed orbit Poincare map as shown in Figure 3.26. It is then transformed to a chaotic

strange attractor at F_h=l.4 in Figure 3.27. Similar observations are evident from the

Fourier spectra shown in Figures 3.25-3.27; the spectrum consists of combination

frequencies for the quasi-periodic solution, but it f'mally changes to a broad band

spectrum characteristic of chaos.

3.5.3. Parametric Studies

The three degree of freedom non-linear model of Figure 3.2a is used to study the

effect of several system parameters such as the stiffness ratio, 1_= kbi / k h i = 1,2,

radial bearing preload to mean load ratio, Fb'_m (i=1,2) and alternating load to mean

load ratio Fah/Frn on the non-linear dynamic behavior. A geared rotor-bearing system

of one-to-one gear ratio (vg=l) with mgi=l kg, Igi=0.0008 kg/m 2, dgi=0.08 m, i=1,2,

and mesh stiffness kh=2X 108 N/m is selected. Five percent mesh damping and one

percent bearing damping values, which are somewhat realistic [72,73], are used, i.e.

_11=_22=0.01, _13=_23--0.0125 and 433=0.05. Both non-linearities are considered

separately in this parametric study. The case when both bearing non-linearities and
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backlash exist simultaneously is not considered here as it has already been examined in

Section 3.4 using the two degree of freedom model.

A. Gear Backlash. Linear Bearings: For the non-linear model of Figure 3.2a with

linear bearings (bbi=0), b h is used as the characteristic length b c. Figures 3.28a and

3.29a show Ygla(_h)and pa(_h) spectra respectively for the soft bearings (1_ = 1 ) with

Fro--0.1 and Fah/Fm--'O.5. Here Yg2a s'pectrum is not included since Ygla---'Yg2a (Ygl(t) =-

Yg2(t)) for a one-to-one gear ratio. As evident from Figures 3.28a and 3.29a, Ygla at

the first peak is larger than that seen at the second peak. Conversely, Pa is much lower

at the first peak, implying that first mode is dominated by the transverse vibrations

whereas the second mode is dictated by the torsional vibrations for soft bearings. This

corresponds to a large dynamic bearing force Fdb i = kbiYgi, but a small dynamic

transmission error (p(t)+e(t)) around the ftrst natural frequency. Jump phenomenon is

observed only at the second peak which is governed by the gear mesh where the

excitation e(t) is applied. This indicates that for k = 1 the modes are weakly coupled.

Accordingly the gear mesh non-linearity, which forces the second peak to be non-

linear, does not affect the linear characteristics of the first peak. However the modal

coupling becomes stronger with an increase in 1_ as evident from the jumps seen at both

peaks in Figures 3.28b and 3.29b for 1_= 5 and Figures 3.28c and 3.29c for 1_= 10.

Torsional vibrations start to dominate the first mode, and the second peak shifts upward

and it may eventually move out of the operational speed range. Therefore, for a large i¢

value associated with stiff shafts and bearings, a single degree of freedom torsional

model as used in Chapter II should be sufficient. Another effect of a large 1_ is that the

ntp subharmonic solutions replace some of the harmonic solutions as shown in Figures

3.28b,c and 3.29b,c.
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Figures 3.30a, 3.31a and 3.30b, 3.31b examine the effect of load ratio for

Fah/Fm=0.5 and 1 respectively with Fro=0.1 and !_ = 1. The frequency response is

well-defined and dominated by the harmonic solutions for Fah/Fm=0.5. However

when Fah/Fm is increased to 1, the region beyond fih=l.0 becomes strongly non-linear

consisting of subharmonic, quasi-periodic or chaotic responses. This was also seen for

the gear pair model.

B. No Gear Backlash. Non-linear Bearings: Now consider the same system with

bh--0 and non-linear bearings described by the approximate model given in Sections

3.2.4. Results are presented for both roller and ball bearings separately since the radial

clearance in a ball bearing is much smaller than that typically found in a roller bearing

with the same inner and outer race diameters, say bbi,,t_ ' = 10bbiba n . For each case,

bbi is used as the characteristic length bc.

Figures 3.32 and 3.33 show the steady state frequency response plots for the

roller bearings of bbi=0.01 mm (i=1,2), for three different i_ = kbi / k h values. As

shown in Figures 3.32a and 3.33a for soft bearings (k = 1), two modes of interest are

weakly coupled, and therefore the jump phenomenon is seen only at the first peak

which is dictated by mostly transverse vibrations. Here, the bearing non-linearities

affect the transverse displacements Ygl and Yg2 which makes the ftrst mode non-linear.

The second peak is more dependent on the modal interactions. Here, again all of the

solutions are purely harmonic and only no impact and single sided impact regimes

exist. However, an increase in l_ introduces chaotic and subharmonic responses as

shown in Figures 3.32b,c and 3.33b,c. For instance, all the solutions within the range

0.6<_h<1.7 are non-harmonic for l_ = 10; the frequency response is no longer well

defined and modal coupling is sufficiently strong so that jump discontinuities are
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observedat both peaks.

A decrease in Fm/Fah enhances the degree of the non-linearity as shown in

Figures 3.34a,b and 3.35a,b. At Fm/Fah=1 in Figures 3.34b and 3.35b, the responses

within 0.5<.Qh<l.4 axe scattered and non-harmonic. However radial preloads Fbi on

bearings should help the mean load F m in limiting the effect of non-linearities. To

prove this claim, we apply a high radial preload to both bearings, say Fm = goi, i = 1,2,

corresponding to Fbi---0.25 for Fm=l.0 in the dimensionless form, and compare results

with the previous case of Fbi=0 in Figures 3.34a,c and 3.35a,c. Figures 3.34c and

3.26c show that most of the subharmonic and chaotic solutions of Figures 3.34a and

3.35a are replaced by harmonic solutions. Hence a well defined frequency response

curve with clear jump discontinuities is obtained by applying Fbi.

Now, replace roller bearings with ball bearings with bc=bbi--0.001 mm and again

investigate the effect of 1_= kbi / k h in Figures 3.36 and 3.37. With soft bearings

(fc = 1) the frequency response is linear (no jumps) which indicates that there are no

impacts within the frequency range considered as shown in Figures 3.36a and 3.37a.

However at a larger value of 1_, double sided impact solutions appear since the

clearance 2bbi is very small. In Figures 3.36b and 3.37b for 1_= 5, the frequency

region of 0.65<t'lh<0.8 consists of the double sided solutions. When (c is increased

to 10, the same behavior is also seen at the second peak as shown in Figure 3.36c and

3.37c. The earlier discussion on the effect of Fah/Fm and Fbi/Fm for roller bearings is

also applicable to the ball bearings as well.

3.6. EXPERIMENTAL VALIDATION

Munro's experimental dynamic transmission error results [27], which were

acquired in 1962 using a four-square spur gear test rig, have been used earlier to
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validate the spur gear pair model of Chapter II assuming that the modes are weakly

coupled with each other. Now, we use the three degree of freedom non-linear model of

Figure 3.2a to analyze his test set-up [27]. In our analysis, bearings are assumed to be

linear since they were highly preloaded; only gear backlash non-linearity is considered

with 2_=0.12 mm [74]. Table 3.2 lists the system parameters used in equation (3.3a)

under four different mean loads. The system damping ratios are assumed tO be uniform

at each load. Average mesh stiffness k h and alternating load Fall values associated with

each mean load Fm are also tabulated in Table 3.2.

Figures 3.38 tl'aough 3.42 compare dynamic transmission error predictions with

the measurements [27]. At the design load (DL), which corresponds to the minimum

static transmission error, good agreement is seen except for the jump discontinuity

found experimentally at the second peak. In our model, we have increased Fah slightly

beyond the value givea in Reference [27], so that the predicted amplitude of the first

linear peak matches very well with the experiment. Such slight changes in critical

system parameters such as Fah and _, although they are varied within the experimental

uncertainties, may alter the frequency response drastically as illustrated in Figures

3.39a and 3.39b. In Figure 3.39a we note that when we reduce the force ratio Fm/Fah

from 30 (the value given in Reference [27]) to 10, a jump discontinuity at the second

peak is seen which is compatible with the experiment. Similarly, a small change in the

damping values, which are not reported in Reference [27], also affects the frequency

response as shown in Figure 3.39b. Figures 3.40 to 3.42 compare the dynamic

transmission error spectra at 3/4, 1/2 and 1/4 of the design load. From these spectra we

conclude that our proposed theory agrees well with the experimental results of Munro

[27] both qualitatively and quantitatively, although amplitudes in the off-resonance

regions are slightly off. Such amplitudes are close to the noise floor in the experiment.
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Table 3.2. Parameters of the Munro's experimental set-up extracted from Reference

[27].

Mean load, Fm

design load(DL) 3/4 of DL 1/2 of DL 1/4 of DL

0.183 0.146 0.105 0.0579

Fah 0.0058t 0.0178 0.0296 0.0393

k b (N/m) 1.16x109 1.16x 109 1.16x109 1.16xl 09

k h (N/m) 3.44x108 3.22x108 3.01x108 2.72x108

gl 1, g:22 0.950 0.966 0.983 1.007

g13, K23 0.242 0.242 0.242 0.242

_11, _22 tt 0.01 0.01 0.01 0.01

_13, _23 tt 0.00375 0.00375 0.00375 0.00375

_33tt 0.015 0.015 0.015 0.015

t modified so that the linear peak matches with the measured value.

tt estimated using the experimental data of Reference [27].
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Further, discrepancies between the theory and the experiment may be due to the

assumptions made in this study. It should however be pointed out that the experiment,

even though it was very precise, was conducted almost three decades back before the

advent of modem non-linear dynamics and chaos science [66-71]. Interestingly,

Munro [27] had also reported subharmonic responses at 3/4, 1/2 and 1/4 of the design

load, and "unrepeatable responses" (probably chaos) at 1/4 of the design load. Our

results agree with such experimental observations as well. Both experiment and theory

show that the chaotic solutions dictate the frequency response beyond the second

resonance for 1/4 of the design load in Figure 3.42.

3.7. CONCLUSION

This analytical study on the non-linear dynamics of a geared rotor-bearing system

with gear backlash and bearing clearances, as excited by the intemal static transmission

error and/or external torque pulsations, has made a number of contributions to the state

of the art. First, an approximate non-linear model of the rolling element bearings with

clearances has been developed and validated. Second, our mathematical model has

been validated as it compares well with a previous experimental study, and several key

parameters such as the mean load, mean to alternating force ratio, radial bearing

preload, bearing stiffness and damping have been identified. Third, conditions for the

chaotic and subharmonic resonances, and the routes to chaos have been identified.

Forth, non-linear modal interactions have been examined. Finally, on a more

fundamental note, our study enriches the current literature on coupled vibro-impact

pairs [52,54,55].
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CHAPTER IV

INTERACTIONS BETWEEN TIME-VARYING MESH

AND CLEARANCE NON-LINEARITIES

STIFFNESS

4.1. INTRODUCTION

Dynamic models of geared systems can be classified into four main groups. The

first group includes linear tirne-invariant (LTI) models, as evident from an extensive

review of the literature given in Reference [14]. The second group considers linear

time-varying (LTV) mesh stiffness kh(t) in the analysis [27,29,62]. Periodic variation

in kh(t) is due to the changing of the number of conjugate teeth pairs in contact during

the convolute action. Accordingly, the system is excited parametrically as well as by

the static transmission error _(_) introduced by kinematic errors and tooth deflections.

In this case, the equation of motion of the gear pair essentially reduces to the Mathieu's

or Hill's equation with a periodic external forcing function. The third group includes

gear backlash in the models, but with time-invariant average mesh stiffness k h ;e kh(i )

[25,30,31,33,34,41,42]. It should be noted that backlash is bound to exist either by

design or due to manufacturing errors and/or wear in any gear pair. Finally, the last

group considers both gear backlash and mesh stiffness variation simultaneously

[24,35-37,53]. However, none of these studies have addressed explicitly the effect of

kh(i_, including its interaction with the backlash non-linearity, on the steady state

frequency response. Ozguven and Houser [24] have attempted to analyze this problem

by replacing kh(i) with a constant mesh stiffness and by defining the "loaded static

transmission error" excitation at the mesh point. But, Ozguven [75] has stated recently
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that this approach may not work depending on the system parameters, and

recommended a detailed investigation of this issue.

Numerous publications have analyzed LTV systems [76-78] and time-varying

systems with quadratic and/or cubic non-linearities [79-82]. However, such studies are

not directly applicable to the geared rotor systems which are the main focus of this

chapter. This problem requires the solution to a set of time-varying differential equations

with clearance-type non-linearities as excited by a periodic force generated at the gear

mesh.

4.2. PROBLEM FORMULATION

A generic geared rotor-bearing system, which consists of a spur gear pair

mounted on flexible shafts which are supported by rolling element bearings as shown

in Figure 4.1 a, is considered here. The gear box is assumed to be rigid. The effect of

the prime mover or the load inertia is not considered assuming that such inertial

elements are connected to the gear box through soft torsional couplings. Further, we

assume that the system is symmetric about the plane of the gears and the axial motion

(parallel to the shafts) is negligible. The governing equations of motion can be given in

the matrix form as

[M]{_"(t)} + [C-"]{_'(t)}+ [K(t)]{f(q(t)))= {F(t)) (4.1)

where [M] is the time-invariant mass matrix and {_(_)} is the displacement vector.

Here, damping matrix [C] is assumed to be time-invariant, as the effect of the tooth

separation and time-varying mesh properties on mesh damping are considered

negligible; validity of this assumption will be examined later. The stiffness matrix
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[K(i)] is considered to be a periodically time-varying matrix given by

[K(i)] =[_,(i + 2_/_h)] where _h is the fundamental gear mesh frequency. The

non-linear displacement vector {f(_(t))) includes the radial clearances in bearings and

the gear backlash as shown in Figure 4.1b, and the forcing vector {F(_)} consists of

both external torque and internal static transmission error excitations.

This chapter extends our previous non-linear single degree of freedom spur gear

pair model of Chapter 1I and multi-degree of freedom geared rotor-bearing system

model of Chapter HI by including time-varying mesh stiffness kh(i), and investigates

its effect on the frequency response of lightly and heavily loaded geared systems.

Interactions between mesh stiffness variation and system non-linearities associated with

gear backlash and radial clearances in rolling element bearings are also considered.

Resonances of the corresponding LTV system associated with the parametric and

extemal excitations are identified using the method of multiple scales. Our formulation

will be validated by comparing predictions with available experimental results [27,28].

4.3. MATHEMATICAL MODEL

A reduced order form of the multi-degree of freedom system of equation (4.1),

the three degree of freedom non-linear model of the geared rotor system, which has

been used in Chapter HI, is considered here. This includes gear inertias Ig 1 and Ig 2,

gear masses mg I and mg 2, and base circle diameters dg I and dg 2, as shown in Figure

4.2a. The gear mesh is described by a non-linear displacement function fh with time

varying stiffness kh(t) and linear viscous damping ch. Bearings and the shafts that

support the gears are modeled by equivalent elements with viscous damping

coefficients Cbl and Cb2 and non-linear springs defined by force-displacement functions

fbl _'ud fb2 which are approximated by piece-wise linear, dead zone type non-linearities
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as suggested in Chapter HI. Both low frequency external excitation due to torque

fluctuations and high frequency internal excitation due to the static transmission error

_(_) are considered in the formulation. Input torque fluctuation is included, but the

output torque is assumed to be constant, i.e. Tgl(t)fTglm +Tgla(_) and

Tg2(t)-- Tg2m. External radial preloads goi and go2 are also applied to both rolling

element bearings.

4.3.1. Equalions of Motion

Equations of coupled transverse-torsional motion of the geared rotor-bearing

system shown in Figure 4.2a with the displacement vector

{_(i)} = {Ygl(i), Yg2(i), P(i)} are given in matrix form as follows:

[o" o o b, o o.lp!,<?l
mg2 o/p;:<+>f+[:%:-:./L.:<,,f

L-mcl mcl mciJ{F'(i)J 0 ChJ{_(i) J

"i'L_ kb2 - kh (t)_fb2(Yg2(i))p - ' Fb2o kh6)]{ fh(_(0) J _m-mc_e"(i)+Pa'r(i)

; (4.2a)

p(i) ---dgl 0g I (i) -- dg20g 2 (i) 4-Ygl (i) -- Yg2 (i) -- ¢(i);
2 2

(4.2b)

1 _ 2Tglm _ 2Tg2m
= 2 - 2 ;

mcl /'dgl + dg2 i'x Fm .... dg I dg 2 , FaT(t) :

t_ _--_-,_J

m¢lTgla(i)

2Igl
; (4.2c-e)
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Figure 4.2. Non-linear models of the geared system of Figure 1; a) three degree of

freedom system, b) gear pair model with a single degree of freedom.
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kh(t)=kh(]+_h h =khm+ = harC°S(r_ht+_hr);
(4.2f)

Ygi - bbi; Ygi > bbi
fbi (Ygi) = 0 ; - bbi < Ygi < bbi ;

Ygi + bbi; Ygi < -bbi
(_- bh); P > bh

fh(P)= 0; - bh < _ < bh. (4.2g,h)

(p + bh ); _ < -b h

Here, ( )' donates derivative with respect to time t, Ygi and 0g i are the transverse and

torsional displacements of the i-th gear (i=1,2), mcl is the equivalent gear pair mass,

Fm is the average force transmitted through the gear mesh, and FaT(t) is the fluctuating

force related to the external input torque excitation. Equations (4.2a-h) have been used

previously in Chapter HI except for k h (_) term, which is expanded in equations (4.2a-

h) in the Fourier series form. Here _(_) is the difference between the dynamic

transmission error and the static transmission error _(_). A dimensionless form of

equation (4.2a) is obtained by letting yo(t)=yo(t)/b c, p(t)=_(t)/b c,

COn= _/khm / mcl, CObi = _/kbi / mgi (i=1,2) and t = COn_ where bc is the characteristic

length. Here, we consider periodic excitation for both _(_) and FaT(t) as

¢(t)= _,erCOS(r_ht +q_er),FaT(t)= _,FaTrcos(r_Tt +q_Tr)where _h and _ are
r=l r=l

the fundamental excitation frequencies of internal displacement and external torque

fluctuations, respectively. Further, define dimensionless excitation frequencies

fih =. _h/COn and fiT = fiT/COn to yield the following governing equations of

motion in the dimensionless form:
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[oo tl[!o,31,yt,
1 1.][ iS(t ) J 0 _33 Jlr,(t) J

_:11 0 Kl3(t)

+[00 K22 --K23(t)0 Kaa(t)

f, y,>lt,/t o//o t
fb2(Yg2)[= Fb2 + 0 + 0 ; (4.3a)

fh(P) J [ Fm J [Fah(t)J [FaT(t)J

Fah(t) = E
r=l

Cr

Fahr (rf_ h )2 cos(rflht + @er ); Fahr = bS;
(4.3b,c)

FaT(t) = X FaTrCoS(rf_Tt+0Tr);
r=l

FRT_
FaT r = mclbctO2 ,

(4.3d,e)

gm . r_i
Fm_ mclbctO2 n , Fbi = mgibctO2, i=1,2;

(4.3f-g)

_ii = Cbi ; _i3 = Ch , i=1,2; _33 = Ch
2mgitOn 2mgitOn 2mcle0n

(4.3hoj)

kh(t-------_) i=l,2;
gii = ; gi3(t)= mgi t°2'ntDn

(4.3k-t)

K33(t) = kh(t------_)= 1 + _,8 r cos(r_ht + t_hr);
khm r=l

(4.3m)
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fb_(Yg_)=

bbi. bb__L

Ygi bc, Ygi > bc

o; - <y i <-%-.
bc bc '

Ygi + bbi; ygi <-bbi
bc bc

fh(P) ='

bb. b_hh

P- b-_" P> bc

O" - bh < p < bh; (4.3n,o)
' bc bc

P +'_c; P < b-h"bc

where Fbi (i=1,2) and F m are the dimensionless components of the mean force vector

{F}m, and FaT(t) and Fah(t) pertain to the alternating extemal excitation {F(t)}e and

internal excitation {F(t)}i force vectors, respectively.

4.4. GEAR PAIR STUDIES

First, we consider the spur gear pair model of Chapter II, as shown in Figure

4.2b, and investigate the effect of kh(i) on the steady state frequency response. The

equation of motion of the gear pair is obtained from equation (4.3a) by substituting

ygi(t)---O for fixed gear centers. Neglecting the input torque variations for the sake of

convenience, FaT(t)--0, we obtain the following equation of motion of a loaded gear

pair with time-varying mesh stiffness and backlash, as excited by the static

transmission error.

iS(t) + 2_331_(t) + g33(t)fh(p(t)) = Fm + Fah(t) (4.4)

where _33, r33 (t), fh(P), Fm and Fah are still given by equation (4.3). Since none of

the existing analytical solution methods are found to be suitable for this problem, the

digital simulation technique is used to solve equation (4.4). A 5th-6th order Runge-

Kutta numerical integration algorithm with variable time step [50] is used here. This
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technique has already been employed successfully in Chapter II for the gear pair

problem with time-invariant mesh stiffness.

First consider only sinusoidally varying mesh stiffi_ess and the static transmission

error excitation, i.e. K33(t)-- l+ElCOS(flht+_hl) where E- _ 1 and

Fah(t) = Fahl_h 2 c°s(_ht +_el)" The tooth deflection or Fah(t) is maximum under the

applied mean load Fm when Ic33(t ) is minimum (i.e. minimum number of gear pair in

contact). Similarly, minimum Fah(t ) corresponds to maximum K33(t). Therefore, there

is an out of phase relationship between Fah(t) and g:33(t), i.e. _hl--_el+_. Here, we

set _bl=;t and d_el=0 for the sake of convenience. Hence, equation (4.4) is modified

to:

_(t)+ 2_331_(t)+ [1- Ecos(i2ht)]fh(p(t))= Fm + Fah_2 cos(I2ht). (4.5)

4.4.1. Linear Time-varying (LTV) System

For zero gear backlash bh, the gear mesh displacement function is fh(p)=p. Hence

equation (4.5) reduces to an LTV equation as follows:

_(t) + 2_331b(t) + [1 - £ cos(_ht)]p(t ) = Fm + Fah_h2 cos(flht ) (4.6)

Approximate analytical solutions of similar LTV differential equations with parametric

and external excitations are already given in the literature [76,77,79-82]. Therefore, we

wiU not attempt to solve equation (4.6) completely. Instead we identify the

corresponding resonances using the method of multiple scales [76]. A first order

uniform solution is given by an expansion having the following form where the scalar

parameter _ is assumed to be very small.
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p(t;e) = po(To,T 1) + epl (To,T l ) + O(e 2) (4.7)

where Tn = £nt is the n-th time scale. Expansions for the derivatives with respect to t

is obtained in terms of the partial derivatives with respect to time scales D n = _ / _T n

d / dt= D O + ED l + O(E 2 ); d 2 / dt 2 = D2o + 2gDoD 1 + O(E 2 ) (4.8a,b)

Substituting equations (7) and (8) into equation (6) and equating like powers of e, with

the external force being applied at O(eO), one obtains

D2po + Po = Fin + Fahl n2 c°s(nhTo) (4.9a)

D2oPl + Pl = -2DoDIPo - I'tDoPo + Po c°s(_hTo) (4.9b)

where elx=2_33. The solution of equation (9a) is given in the complex domain as

Po = A(TI )eiT° +Fm + AeinhT° + CC; A = Fahl n2 / 2(1 - n 2 ) (4. I 0a,b)

where cc represents the complex conjugate terms and i = 4-L-i-. At fl h = 1, we note that

(1- _2)-1 will make the amplitude of the response boundless; this is the primary

resonance since it appears in the first order. Substituting equation (4.10) into equation

(4.9b) we get
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D2pl + Pl = -2iDl AeiT° - ig .AeiT° - i_A'Oh eif_hT° + 1 Aei(l+t-lh)To
2

+lAei(l_f_ h)TO+ 1 Ae2i_hTe + l Fmei[lhTo + A + cc
2 2 2

(4.11)

Besides the primary resonance at fl h ---1, the particular solution of equation (4. I 1) has

other secular terms when 2fl h -- 1 and _h _ 2. At 2fl h - 1, summation of the

external excitation frequency and the parametric excitation frequency is close to the

dimensionless natural frequency which is unity. One could also observe resonances at

_'_h--n, n>2 when higher scales are considered in equation (4.7). In summary,

equation (4.6) has resonances at _h _ 0.5 and n, where n= 1,2,3 ....

Now, we solve equation (4.6) using digital simulation. Figure 4.3 shows the

steady state frequency response curves pa(flh) and pro(Oh) for a lightly loaded system

with Fro=0.1, Fahl=0.05, _33=0.05, bh=0 and four different It values. Note that E--q)

represents the LTI system. For I_>0, we do not observe any multi-valued regions and

jump phenomenon, similar to those seen for the non-linear systems. Mesh stiffness

variation E has a negligible effect on the natural frequency which corresponds to the

largest peak in Figure 4.3a; but an increase I_ in amplifies Pa in both resonance and off-

resonance regions. Here Pm is no longer uncoupled from Pa, and it varies substantially

in the vicinity of primary resonance at f_h=l.0, and the parametric resonance at

flh--0.5, especially for a large E confirming the analysis given earlier. Note that our

study is limited to only these two resonances as an investigation of subharmonic

resonances at flh _" n, n>l is beyond the scope of this study.
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Figure 4.3. Frequency response spectra of a lightly loaded LTV gear pair with

sinusoidal _(i) and kh(t), Fro=0.1 , Fahl--O.05 , _33--0.05, bh--0 and four

different e values; a)Pa versus t2h, b) Pm versus fI h.
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4.4.2. Non.linear Time-varying System

Next we consider the time-varying non-linear system with backlash, given by

equation (4.5). Figure 4.4 shows pa(t'lh) and pm(_h) spectra with Fro--0.1, Fal=0.05,

433=0.05, and four £ values. In this case, we notice a jump discontinuity at the

resonant frequency and a dual-valued region bounded by jump-up and jump-down

transition frequencies. For £---0, Pm¢ Pm (t_h) is evident in the no-impact regime,

similar to the results given in Chapter II. But when £>0, the transition frequencies

which define the jump phenomenon become smaller, and Pa at the jump-down

frequency grows with increasing E. This indicates that kh(t) enhances the degree of

non-linearity associated with the gear backlash. Similar to the results of LTV system in

Figure 4.3, we again observe in Figure 4.4a a parametric resonance at _h---0.5, which

is strong for £=0.2 and 0.4 curves. Figure 4.5 compares the time histories p(t) for

each c values at the parametric resonance peak, _h---0.5. For the LTI system (E=0), a

harmonic no-impact type steady state solution exists as illustrated in Figure 4.5a. With

increasing E, this solution is transformed into a non-harmonic periodic solution with a

larger peak to peak value as a result of the parametric mesh stiffness excitation, as

shown in Figures 4.5b-d.

Now, consider a heavily loaded gear pair with Fro--0.1, Fal=0.01 and 433=0.05.

Figures 4.6a and 4.6b show pa(_h) and pm(_h) spectra, respectively. In this case,

tooth separation does not occur for E=0 which results in a linear frequency response

curve with a constant Pm- A small jump is seen at E---0.1, and this jump becomes larger

for £---0.2 and 0.4; overall alternating amplitudes Pa at resonance and within the off-

resonance regions increase considerably. This suggests that the mesh stiffness

variation is especially important for a heavily loaded gear pair with backlash.
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Figure 4.4. Frequency response spectra of a lightly loaded non-linear gear pair of
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4.4.3. Non.linear Time-varying Mesh Damping

In order to investigate the effect of non-linear, time-varying gear mesh damping

on the steadystatefrequency response,we considera sinusoidallyvarying gear mesh

damping _33(t)which isassumed to be proportionalto the mesh stiffnessfunction

_33(t),and a non-linearvelocityfunctiongh associatedwith toothseparation.Hence

thegoverning equationofmotion is

j (t) + 2_33 (t)gh(15(t)) + [1 - _;cos(_ht)]fh (p(t)) = Fm + Fahf_h2 cos(_ht); (4.12a)

_33(t) = _33K33(t) = _33( 1 + Ecos(_ht + ¢_hl)) ;

0; bh bh

---<p<--
gh(lb(t)) = bc bc

f)(t); else

(4.12b)

(4.12c)

Figure 4.7 compares frequency response spectra for the cases of a) non-linear time-

varying gear mesh damping defined by equation (4.12), and b) linear time-invariant

mesh damping, _33 * _33(t) with gh(15(t)) = 15(t), as given by equation (4.5). As

shown in Figure 4.7, both mesh damping models yield virtually the same spectra.

Therefore a linear time-invariant gear mesh damping model can be used without losing

any accuracy.

4.4.4. Periodic _([) and kh([)

Up to now, we have only considered the sinusodally varying kh(t) and _(t). In

real geared systems, however, both kh(t) and E(t) are periodic which can be
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expressed in the Fourier series form. Figure 4.8 illustrates kh(t) and _(i) for a low

contact ratio spur gear pair; these typical time histories are predicted using an existing

spur gear tooth model [21]. The first six Fourier coefficients of kh(i) and _(i) are

given in Table 4.1. Note that n-th harmonic of _([) causes a resonance around

Dh=l/n. Hence higher harmonics are important only at low frequencies. Accordingly,

only the first three Fourier coefficients of [(t) are deemed sufficient here, given the

nature of the practical gear noise and vibration problems. Similarly, kh(t) is also

tnmcated for the sake of convenience, retaining the first three terms. Higher terms

(n>3) could be easily included in the analysis if necessary. Therefore the governing

equation with FaT(t)=0 is

3 3
ib(t) + 2_33(t)lb(t) + [1 - EI_ r cos(rf_ht)]fh(p(t)) = Fm + _ Fahr (r_ h)2 cos(rf_ht)

r=l r=l

(4.13)

Figures 4.9a and 4.9b show frequency response spectra for Fro=0.1, Fahl=0.05,

Fah2=0.02, Fah3=0.01, 433=0.05, El/E2=2, 1;i/1;3=4 and four different I_I=E values.

As shown in Figure 4.9, two other jump discontinuities, which are clearly associated

with Fal d and Fah3, are found. These jumps are similar to the fundamental resonance

peak except they have lower amplitudes. In order for these two jumps to exist, Fah2

and Fall3 excitations have to be large. Once again, it is evident that the periodic mesh

stiffness enhances the extent of backlash non-linearity.
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Table 4.1 Fourier coefficients of _(t) and kb(t) given in Figure 4.8

Harmonic n

Amplitude

kh(i)

(MN/m)

0 20.00 107.8

1 3.45 10.3

2 0.26 5.7

3 0,45 1.3

4 0.38 4.0

5 0.27 1.5

6 0.26 1.4
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Figure 4.9. Frequency response spectra of a non-linear gear pair with periodic _(i) and
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4.5. (;EARED ROTOR.BEARING SYSTEM STUDIES

Next, we solve the three degree of freedom non-linear model of Figure 4.2a and

equation (4.3a) using the digital simulation technique for excitation Fah(t) with

FaT(t)=0.

4.5.1. Sinusoidal _([) and kh(i)

Similar to Section 4.4, assume sinusoidal forms: _33(t) = 1 + Ecos(flht + _hl )

and Fah(t)=FahlfZh2COS(f_ht+_el). Equation (4.3a) reduces to an LTV matrix

equation when gear backlash and radial bearing clearances are set to zero, i.e.

fh(P(t))--p(t) and fbi(Ygi(t))=Ygi(t), i=1,2. Figure 4.10 shows pa(flh) and Ygla(t_h)

spectra of this LTV system under heavily loaded conditions with Fro=0.1, Fahl=0.01,

_33--0.05, _i3--0,0125 and _ii=0.01, i=1, 2. Note that Ygla =Yg2a since the gear ratio

is one. As shown in Figure 4.10, frequency response has peaks at/'_h=O.)/=0.4 and

_h=03ii=1.25 where 03I and o3ii are the natural frequencies of the LTI system,

corresponding to the first two coupled transverse-torsional modes. In Figure 10a, we

observe a parametric resonance at 2f_h=O _ similar to the gear pair model of Section 4.4

whereas the parametric resonance at 2flh=031i is more obvious in pa(flh) spectrum of

Figure 4.10b for a larger e value. Again like the LTV gear pair results of Figure 4.3,

Ygla and Pa are amplified with increasing e in both resonance and off-resonance

regions.

Now introduce the gear backlash bh=b c to this heavily loaded system;

corresponding results are given in Figure 4.11. The most significant effect of kh(/) is

that it interacts with the gear backlash non-linearity to develop a jump discontinuity at

the second primary resonance peak. This is clearly evident from the fact that either

backlash or kh(i) alone can not cause a jump for such a heavily loaded system.
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Figure 4.10. Frequency response spectra of a LTV geared rotor-bearing system of

Figure 2a with sifiusoidal _(i) and kh([) , Fm=0.1 , Fsh]=0.01 , _33=0.05,

_33=0.05, _i3--0.0125 and _ii=0.01, Kii=0.5, bh=bhbi--0 , i=l, 2, and four

el=l_ values; a) Ygia versus L'_h, b) Pa versus f_b.
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Besides an increase in amplitudes in Figures 4.1 l a and 4.1 lb, chaotic and/or quasi-

periodic solutions, which do not exist in heavily loaded time-invariant systems as

shown in Chapter lIl, are also predicted in the following regimes: 1.35<Dh<1.65 for

£=0.2 and 1.25<t2h<l.7 for E=0.4. Similar to the LTV system of Figure 4.10,

parametric resonances at 2£_=¢o/and 2._hmgx31i are again observed here.

Next, radial clearances in bearings bbi=bc are considered for a heavily loaded

system with zero gear backlash, Fm=l.0, Fahl=0.1, _33=0.05, _i3=0.0125 and

_ii=0.01, i=l, 2. In this case, mesh stiffness variation and non-linearity exist in

different components. As shown in Figure 4.12, _ again increases the amplitudes, but

the spectrum shape is essentially the same. This is further evident from Figure 4.13,

given for a lightly loaded drive with Fm=l.0 and Fahl=0.5. This suggests a weak

interaction between the gear mesh stiffness variation and bearing non-linearities.

4.5.2. Periodic _(i) and kh(t)

Similar to the gear pair analysis of Section 4.4.4, we consider periodic g33(t) and

Fah(t) with three Fourier coefficients. Figure 4.14 shows spectra for Fro=0.1,

Fahl=0.01, Fah2=0.004, Fah3=0.002, _33=0.05, _i3=0.0125 and _ii=0.01, i=1, 2;

el/1_2=2, el/e2--4, and el=e.---O, 0.1 and 0.2. Here only the gear backlash non-linearity

(bh=b c and bbi=0) is considered. Peaks at t"lh=toi/n and £1h=e0ii/n, n=1,2,3 are

predicted corresponding to excitation Fah r. Periodic mesh stiffness enhances the

alternating amplitudes over the values given by the time-invariant mesh stiffness case

and introduces a jump discontinuity at the second primary resonance similar to the

sinusoidal mesh stiffness case.
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4.6. EXPERIMENTAL VALIDATION

4.6.|. Spur Gear Pair Dynamics

First we compare our theory with experimental results of Kubo [28], as extracted

from Reference [24]. Kubo used a heavily damped (433=0.1) four-square spur gear

test rig, and measured dynamic factor as the ratio of the dynamic to static tooth root

stresses. The experimental set-up was designed to support a gear pair with very stiff

shafts and bearings. Therefore our gear pair model can represent the test rig

adequately, similar to Chapter H. The static transmission error _([) and time-varying

mesh stiffness kh(t) of the tested gear pair has been predicted using an existing elastic

spur gear model [21] and then equation (4.4) is solved to predict the dynamic response.

Here, we define the dynamic factor as the dynamic to static mesh force ratio which is

equivalent to the dynamic factor calculation based on the stress analysis under the

assumption that the change in the moment arm due to changes in the contact point is

negligible. Figure 4.15 compares the envelope of measurements obtained by Kubo for

several tooth pairs with our predictions. When the mesh stiffness kh(t) is assumed to

be time-invadant, the predicted jump discontinuity is not as large as the jump seen in

experimental data and the predicted transition frequency is higher than the measured

value, as reported in Chapter II. However predictions improve significantly when

sinusoidally varying kh(_) and _(i) at f_h are used, as given by equation (4.5). A

sharp jump discontinuity is found which matches well with experiment, and the

predicted dynamic factor is very close to measured envelope. Finally, prediction agrees

with experiment even better when periodically varying _(-/) and kh(]-) with the first three

Fourier coefficients considered. This figure clearly shows that the time-invariant linear

or non-linear model can not predict the true dynamic behavior, as time-varying mesh

stiffness must be included in the non-linear mathematical formulation.
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195



4.6.2. Geared Rotor-Bearing System

As the second example case, experimental results of Munro [27] are compared

with our geared rotor-bearing model of Figure 4.2a and equation (4.3). These

experimental re.malts were used earlier to validate time-invariant multi-degree of freedom

non-linear system of Chapter rll in which we had to reduce the damping ratio and

increase the excitation [(i) in order to correlate theory with experiment. Now we go

back to the original system parameters given in References [27] and Chapter III, and

predict the dynamic transmission error spectra using both time-varying and time-

invariant gear mesh stiffness formulations for a three degree of freedom non-linear

model with gear backlash and linear bearings. Figure 4.16 compares results at the

design load which corresponds to the minimum excitation _([). In this case, the mean

load to alternating load ratio F = Fm / Fah I is very large, say F _ 30. Time-invariant

stiffness model prediction differs considerably from the experiment in Figure 4.16.

Predicted amplitudes are considerably lower than the measurements, and a significant

jump discontinuity found experimentally around the second natural frequency _ is not

even predicted by this formulation. But when the periodically-varying mesh stiffness is

considered, our model predicts the frequency response accurately including the jump

discontinuity. The reason for a large jump around ¢t)n for a very heavily loaded system

(F _ 30) is now clear. The second natural frequency _ of the corresponding LTI

system is nearly twice the first natural frequency ¢o1. This forces the second primary

resonance at _h _ ¢°I1 to coincide with the parametric resonance at f_h _ 2¢oi;

consequently a very large jump discontinuity is developed.

At 3/4 of the design load with F -- 10, the effect of kh(t) is observed in Figure

4.17. Although the time-invariant model predicts the jump at o3u, predicted amplitudes
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are far below the measurements. The inclusion of kh(i) improves predictions

drastically. Similarly at I/2 and 1/4 design loads, mesh stiffness variation as shown in

Figures 4.18 and 4.19 respectively, affects the frequency response significantly and

yields predictions closer to the measurements.

4.7. CONCLUDING REMARKS

This chapter on the non-linear dynamics of a geared rotor-bearing system with

time-varying mesh stiffiaess kh(t) , as excited by the static transmission error under a

mean load, has resolved a number of fundamental issues. First, the interaction between

time-varying mesh stiffness kh(t) and mean torque load has been understood.

Second, frequency response of the corresponding LTV system has been studied, and

the resonances associated with parametric and forced excitations have been identified.

Third, dynamic interactions between kh(i) and system non-linearities associated with

gear backlash and radial clearances in roiling element bearings have been investigated; a

strong interaction between kh(t) and gear backlash is found where as the coupling

between kh(t) and bearing non-linearities is weak. Finadly, our time-varying non-

linear formulation has yielded good predictions as compared with benchmark experiments.
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CHAPTER V

CONCLUSION

5.1. SUMMARY

In this study, linear and non-linear mathematical models of a generic geared

rotor-bearing system shown in Figure I. I a are developed, and several modeling issues

which have never been addressed previously in the literature are investigated in depth.

In Chapter I, a dynamic irmite element model of the system is developed. Effects of

several system parameters such as torsional and transverse flexibilities of the shafts and

prime mover/load inertias are investigated, and modes of interest are identified. Three

reduced order linear time-invariant models are developed and the conditions under

which such models are suitable are determined by comparing the eigen-solutions with

the finite element model results.

In Chapter II, non-linear frequency response characteristics of a spur gear pair

with backlash and time-invariant mesh stiffness are examined for both external and

internal excitations. The intemal excitation is of importance from the high frequency

noise and vibration control view point and it represents the overall kinematic or static

transmission error _(t). Such problems may be significantly different from the rattle

problems associated with external, low frequency torque excitation. Two solution

methods, namely the digital simulation technique and the method of harmonic balance

have been used to develop the steady state solutions for the internal sinusoidal

excitation. Difficulties associated with the determination of the multiple solutions at a

given frequency in the digital simulation technique have been resolved as one must
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search the entire initial conditions map. Such solutions and the transition frequencies

for various impact situations are found analytically by the method of harmonic balance.

Further, the principle of superposition can be employed to analyze the periodic

transmission error excitation and/or combined excitation problems provided the

excitation frequencies are sufficiently far apart from each other. Predictions compare

reasonably well with the experimental data available in the literature.

In Chapter 111, non-linear frequency response characteristics of a geared rotor-

bearing system are examined. A three degree of freedom dynamic model is developed

which includes non-linearities associated with radial clearances in the radial rolling

element bearings and backlash between a spur gear pair; linear time-invariant gear

meshing stiffness is assumed. Bearing non-linear stiffness function is approximated

for convenience sake by a simple model which is identical to that used for the gear

mesh. This approximate bearing model has been verified by comparing the steady state

frequency spectra. Applicability of both analytical and numerical solution techniques to

the multi-degree of freedom non-linear problem is investigated. Proposed theory is

validated by comparing the results with available experimental data. Several key issues

such as non-linear modal interactions and differences between internal static

transmission error excitation and external torque excitation are discussed. Additionally,

parametric studies are performed to understand the effect of system parameters such as

bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial

bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion

used to classify the steady state solutions is presented, and the conditions for chaotic,

quasi-periodic and subharmonic steady state solutions are determined. Two typical

routes to chaos observed in this geared system are also identified.
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Non-linear frequency response characteristics of a geared rotor-bearing system

with time-varying mesh stiffness are examined in Chapter IV. The spur gear pair

model of Chapters II and geared rotor-bearing system model of Chapter 11I are

modified to include periodic mesh stiffness k h (t). Governing non-linear time-varying

equations which include clearance non-linearities associated with gear backlash and

rolling element bearings, as excited by the static transmission error _(i) under a mean

torque load, are solved using digital simulation technique. Resonances of the

corresponding linear time-varying (LTV) system associated with parametric and

external excitations are identified using the method of multiple scales and digital

simulation. Interactions between mesh stiffness variation and clearance non-linearities

have been investigated; a strong interaction between time varying mesh stiffness k h (t)

and gear backlash is found whereas the coupling between kh(t) and bearing non-

linearities is weak. The predictions yielded by the proposed time-varying non-linear

model agree well with the experimental results available in the literature.

5.2 FUTURE RESEARCH AREAS

The following topics are identified as areas of future research, based on the

present study on non-linear dynamic analysis of geared rotor-bearing systems:

1. Extension of current models to study dynamics of helical and bevel gear drives,

and multi-gear mesh systems such as planetary gear trains.

2. Iteration procedures for the transmission error input and inclusion of the

interactions between external and internal kinematic error excitations. Also

inclusion of side-bands in non-linear dynamic analysis.
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,

.

Design of a passive vibration control strategy using squeeze Rim dampers. And,

investigation of semi-active and active vibration and noise control schemes using

piezoelectricactuatorsor hydraulicmounts.

Statisticalencrgy analysisofnon-lineargearedsystems.
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APPENDIX A

USER'S GUIDE FOR THE GEARED ROTOR DYNAMICS

PROGRAM - GRD

A.I. DESCRIPTION

Geared Rotor Dynamics Program "GRD" is a general purpose f'mite element

computer program to analyze dynamics of a system consisting of two shafts supported

on bearings and coupled by a gear mesh. It computes natural frequencies, mode shapes

and the vibration response of the system to static transmission error excitation, mass

unbalances and geometric eccentricities of gears. Many rigid disks, bearings, and

hollow shafts can be considered by GRD. Since GRD uses finite elements method, the

system should first be discretized to small rotor elements. It is also necessary to enter

data for each element in sequence.

A.2. USING THE PROGRAM

There are two ways to input data in GRD. Data can be entered through a file or

interactively. The first set of questions will give the user this option (the Primary

t_Q_j_). Display on screen:

ENTER DATA INTERACTIVELY OR FROM A DATA FILE7
OPTION (1) : ENTER DATA INTERACTIVELY
OPTION (2) : ENTER DATA FROM FILE

CHOOSE OPTION I OR 2 (NO DEFAULT) >> b

A.2.1. OPTION I: Interactive Data Entry

By selecting this option, the user will be prompted to enter all the data that will be

necessary to run this program. In the process, a new data f'de will be created from the

user's input. The data entered will be reorganized in a format so that the program may

read from it. For this reason, a new data file will be created and the user will be

prompted to name this new fde as follows:

DATA WILL BE INPUT INTERACTIVELY, AND IN THE PROCESS, YOUR INPUT
WILL BE ORGANIZED'IN A NEW DATA FILE FOR THIS PROGRAM TO
READ FROM.

ENTER AN INPUT FILE NAME >> __
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If an error should arise from opening this new file, the user will be given the option to

try gain:

*ERROR IN OPENING FILE* DO YOU WISH TO TRY AGAIN?

TYPE (1) FOR YES OR (2) FOR NO >>__

If YES, then the user will be asked the file name again. If NO, the program will

return to the Primary Option.

2.1.1. Data Entry Groupings

In this section, the user will enter the necessary data. The questions will be

grouped into the following categories.

1. GENERAL DATA
2. MATERIAL PROPERTIES
3. ELEMENT PROPERTIES
4. GEAR MESH PROPERTIES

5. FORCED RESPONSE DATA (If user chooses this option)

1. _;¢n¢ral Data:

In this section, the following general information about the overall system will be

entered:

I) THE NUMBER OF ROTOR ELEMENTS IN THE FIRST SHAFT
2) THE NUMBER OF ROTOR ELEMENTS IN THE SECOND SHAFT
3) THE NUMBER OF ROTOR ELEMENTS BEFORE THE GEAR IN THE FIRST SHAFT
4) THE NUMBER OF ROTOR ELEMENTS BEFORE THE GEAR IN THE SECOND

SRAFF

As an example, consider the system shown in Figure AI. The fast step is to the

divide rotors into small pieces (irmite rotor elements) to obtain a finite dement model of

the system (as illustrated in Figure A2). The shorter the rotor elements, the higher the

accuracy and the longer the computation time. In Figure A2, each shaft is divided into

4 pieces. The numbering can start at any end of the driving rotor and finish at any end
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of the driven rotor. In Figure A2 for example, we start at the left end of the first shaft

and finished numbering at the right end of the second shaft. According to this

configuration (Figure A2), the number of rotor elements in the first and second shafts

are both 4 and the number of rotor elements before the pinion and gear axe 2 and 6,

respectively.

2. Material Properties:

In this section, material properties of the shaft considered will be entered. The

following will be required:

1 ) THE DENSITY OF THE SHAFT MATERIAL (kg/m 3)

2) THE VISCOUS DAMPING COEFFICIENT (s)
3) THE HYSTERETIC DAMPING COEFFICIENT

4) THE MODULUS OF ELASTICITY (N/m 2)

5) SHEAR MODULUS OF ELASTICITY (N/m 2)

(DE.FAULT=7800)

(DEF--0)

(DEF---0)

(DEF=.207EI2)

(DEF=.0795EI2)

3. Element ProDertie_;

The main portion of data to be entered is in this section. The options given are the

foUowing:

1) DEFINING THE DISK ELEMENT
2) DEFINING THE BEARING ELEMENT
3) DEFINING THE ROTOR ELEMENT (also the default selection)
4) DEFINING THE GEAR ELEMENT
5) FINISH WITH DATA INPUT FOR FIRST SHAFT
6) FINISH WITH DATA INPUT FOR SECOND SHAFT

The most important part in this section of questions is the order of data entry. The

order is based on the numbered finite element model (see Figure A2). For the lrmite

element model shown in Figure A2, the order of data input is as follows:

1) DEFINING BEARING #1
2) DEFINING ROTOR #1
3) DEFINING ROTOR #'2
4) DEFINING GEAR#1
5) DEFINING ROTOR #3
6) DEFINING ROTOR #-4
7) DEFINING BEARING #2
8) TYPE IN OPTION 5 (FINISHED WITH DATA INPUT FOR SHAFT #I)
9) DEFINING BEARING #3
10) DEFINING ROTOR #5
11) DEFINING ROTOR #6
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12) DEFINING GEAR#2
13) DEFINING ROTOR #7
14) DEFINING ROTOR #8
15) DEFINING BEARING #4
16) TYPE IN OPTION 6 (FINISHED WITH DATA INPUT FOR SHAFT #2)

From the example above, one can see the ordering of data entry moving from the first

element in shaft #1 to the last element in shaft #2. Ultimately, the program will also

read from the data file in this order.

According to the option selected (disk, gear, rotor element or bearing), the

following information is required:

The disk element - option 1:

1) DISK OUTER DIAMETER IN (m)
2) WIDTH OR THICKNESS OF DISK IN (m)

3) MATERIAL DENSITY OF DISK IN (kg/m 3) (DEF=7800)

The bearing element - option 2:

THE ST_'FN_S (N/m)
I)Kxx

2)Kxy

3)Kyx

4)Kyy
THE DAMPING (N-slm_

5) Cxx

6) Cxy

7) Cyx

8) Cyy

The rotor dement - option 3:

1) LENGHT OF ROTOR ELEMENT IN (m)
2) OUTER DIAMETER OF ROTOR ELEMENT IN (m)

3) INNER DIAMETER OF ROTOR ELEMENT IN (m) (for hollow rotor) (DEF=0)
4) THE AXIAL LOAD IN (N) (DEF_0)

The gear dement - option 4:

1) PITCH CIRCLE DIAMETER IN (m)
2) FACE WIDTH IN (m)
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3) GEAR MATERIAL DENSITY IN (kg/m 3) (DEF=T800)

Option 5 should be chosen when the elements of the first shaft have been defined.

The user will then be given the material properties of the second shaft., and given the

option to make changes to this set of data. Similarly, option 6 should be entered

when all elements of the second shaft have been entered.

4, Q¢_r Mesh Properties:

The following gear mesh properties will be entered in this section:

1) GEAR MESH STIFFN_S (N/m)
2) GEAR MESH DAMPING (N-s/m)
3) BASE CIRCLE DIAMETER OF FIRST GEAR (m)
4) BASE CIRCLE DIAMETER OF SECOND GEAR (m)

fDEF=0)

Following the input of gear mesh data, the program will also ask the user for the

number of natural frequencies wanted in the output.

$. Forced Response Data:

Here, the user is given the option to have forced response calculated. If the

selection is NO, then interactive input will be complete. If the selection is YES, then

the following options are given:

1) WHIRLING ORBIT AT A SPECIFIED NODE
2) DEFLECTIONS AT A SPECIFIED NODE
3) DYNAMIC LOAD TO STATIC LOAD RATIO AT THE MESHING POINT

Following the options menu, the general information for this section will be required:

1) GEOMETRIC ECCENTRICITY (RUNOUT) OF GEAR 1 (m)
2) GEOMETRIC ECCENTRICITY (RUNOUT) OF GEAR 2 (m)
3) PEAK TO PEAK VALUE OF STATIC TRANSMISSION ERROR (m)
4) MASS UNBALANCE OF GEAR 1 (kg-m)
5) MASS UNBALANCE OF GEAR 2 (kg-m)
6) NUMBER OF TEETH IN GEAR 1 (PINION)
7) AVERAGE FORCE TRANSMITIED (hi)
8) VALUE OF MODAL DAMPING

(DEF=0)
(DEF_0)

(DEF=O)
(DEF=0)

(DEF=.01)

After the general information for this section has been completed, the program will

require certain information based from the choice selected from the options menu :
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Forced response option 1: Whirling orbit at a specified node, the following

information will be required.

1) NUMBER OF NODE AT WHICH WHIRL ORBIT IS REQUIRED
2) ROTATIONAL SPEED OF SHAFT I (tad/s)

Forced response option 2: Deflections at a specified node will be required.

1) STARTING ROTATIONAL SPEED OF SHAFT 1 (tad/s) (DEF=0)
2) UPPER LIMIT OF ROTATIONAL SPEED OF SHAFT I (tad/s)
3) INCREMENT FOR ROTATIONAL SPEED (tad/s) (DEF=5)
4) DIRECTION AT WHICH FORCED RESPONSE IS WANTED (1,2 OR 3) (DEF=I)
5) NUMBER OF NODE AT WH1CH FORCED RESPONSE IS WANTED

In question (4), enter: 1 for deflection in pressure line direction; 2 for deflection in

direction perpendicular to pressure line; 3 for torsional deflections

1) STARTING ROTATIONAL SPEED OF SHAFT 1 (tad/s)
2) UPPER LIMIT OF ROTATIONAL SPEED OF SHAFT 1 (rad/s)
3) INCREMENT FOR ROTATIONAL SPEED (tad/s)

(DEF=0)

(DEF=5)

Having completed this section on forced response, the program will then read from the

new data file created from the interactive input. The output will be in an output data file

named FOR001.DAT .

A.2.2. OPTION 11: Enter Data From File

With this selection, the user is then requested to give the name of the file where the

data is stored, instead of entering data interactively. The program will then proceed to

read from the file. If an error should occur in opening the trde, then the user will be

given the option to try again. If the user opts to try again, then the user will be asked

the file name again. If no, then the program will return to the primary option. After the

program has read from the file the output will be found in an output data f'de.
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A.4. SAMPLE OUTPUT FILE FOR001.DAT

GEARED ROTOR DYNAMICS PROGRAM

GILD

GEAR DYNAMICS AND GEAR NOISE RESEARCH LABORATORY

THE OHIO STATE UNIVERSITY

THE FIRST SHAFT:

MATERIAL PROPERTIES OF THE SHAFT:

DENSITY OF THE MATERIAL ..... =

ELASTIC MODULUS ............. =

SHEAR MODULUS ............... =

VISCOUS DAMPING COEFFICIENT.=

HYSTERETIC LOSS FACTOR ...... =

0.78000E+04 KG/M**3

0.20700E+12 N/M**2

0.79500E+11 N/M**2

0.00000E+00 S

0.00000E+00

AT Z- 0.0000 M THERE EXISTS A BEARING WITH THE

FOLLOWING STIFFNESS AND DAMPING COEFFICIENTS:

KXX= 0.10000E+I0 N/M KXY--

KYX= O.O0000E+O0 N/M _=

CXX- 0.00000E+00 N-S/M CXY-

CYX= 0.00000E+00 N-S/M CYY =

0.00000E+00 N/M

0.10000E+I0 N/M

0.00000E+00 N-S/M

0.00000E+00 N-S/M

AT Z- 0.0000 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE

FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... -=

OUTER DIAMETER .............. -=

INNER DIAMETER .............. ,-

AXIAL LOAD .................. -,

0.50000E-01 M

0.30000E-01 M

0.00000E+00 M

0.00000E+00 N

AT Z-- 0.0500 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE

FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT .......

OUTER DIAMETER ..............

INNER DIAMETER .............. --

AXIAL LOAD .................. -

0.50000E-01 M

0.30000E-01 M

0.00000E+00 M

0.00000Z+00 N

AT Z- 0.i000 M THERE EXISTS A RIGID DISK WITH THE FOLLOWING

SPECIFICATIONS:

OUTER DIAMETER ...... = 0.13500E+00 M
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WIDTH ............... -"

MATERIAL DENSITY .... -_

0.25400E-01 M

0.78000E+04 KG/M**3

AT Z- 0.I000 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE

FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... --

OUTER DIAMETER .............. --

INNER DIAMETER .............. --

AXIAL LOAD .................. -

0.50000E-01 M

0.30000E-01 M

0.00000E+00 M

0.00000Z+00 N

AT Z-- 0.1500 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE

FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT .......

OUTER DIAMETER .............. =

INNER DIAMETER .............. =

AXIAL LOAD .................. =

0.50000E-01 M

0.30000E-01 M

0.00000E+00 M

0.00000Z+00 N

AT Z= 0.2000 M THERE EXISTS A BEARING WITH THE

FOLLOWING STIFFNESS AND DAMPING COEFFICIENTS:

KXX- 0.10000E+I0 N/M KXY--

KYX-- 0.00000E+00 N/M KYY-

CXX_ 0.00000E+00 N-S/M CXY-

CYX- 0.00000E+00 N-S/M CYY-

0.00000E+00 N/M

0.10000E+10 N/M

0.00000E+00 N-S/M

0.00000E+00 N-S/M

THE SECOND SHAFT:

MATERIAL PROPERTIES OF THE SHAFT:

DENSITY OF THE MATERIAL ..... =

ELASTIC MODULUS ............. =

SHEAR MODULUS ............... -

VISCOUS DAMPING COEFFICIENT.=

HYSTERETIC LOSS FACTOR ...... -

0.78000E+04 KG/M**3

0.20700E+12 N/M**2

0.79500E+11 N/M**2

0.00000E+00 S

0.00000E+00

AT Z- 0.0000 M THERE EXISTS A BEARING WITH THE

FOLLOWING STIFFNESS AND DAMPING COEFFICIENTS:

KXX- 0.10000E+Z0 N/M KXY-

KYX- 0.00000E+00 N/M KYY-

CXX- 0.00000E+00 N-S/M CXY-

CYX- 0.00000E+00 N-S/M CYY-

0.00000E+00 N/M

0.10000E+10 N/M

0.00000Z+00 N-S/M

0.00000E+00 N-S/M

AT Z- 0.0000 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE

FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... =

OUTER DIAMETER .............. --

INNER DIAMETER .............. -

AXIAL LOAD .................. -

0.50000E-01M

0.40000E-01 M

0.00000Z+00 M

0.00000E+00 N
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AT Z= 0.0500 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE

FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... =

OUTER DIAMETER .............. --

INNER DIAMETER .............. t

AXIAL LOAD .................. -

0.50000E-01 M

0.40000E-01 M

0.00000Z+00 M

0.00000Z+00 N

AT Z- 0.1000 M THERE EXISTS A RIGID DISK WITH THE FOLLOWING

SPECIFICATIONS:

OUTER DIAMETER ...... -

WIDTH ............... --

MATERIAL DENSITY .... -

0.24500E+00 M

0.25400E-01 M

0.78000E+04 KG/M**3

AT Z- 0.1000 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE

FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... --

OUTER DIAMETER .............. u

INNER DIAMETER .............. -

AXIAL LOAD .................. =

0.50000E-01 M

0.40000E-01 M

0.00000E+00 M

0.00000E+00 N

AT Z- 0.1500 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE

FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... =

OUTER DIAMETER .............. -

INNER DIAMETER .............. -

AXIAL LOAD .................. -

0.50000E-01 M

0.40000E-01 M

0.00000E+00 M

0.00000E+00 N

AT Z- 0.2000 M THERE EXISTS A BEARING WITH THE

FOLLOWING STIFFNESS AND DAMPING COEFFICIENTS:

KXX-- 0.10000E+10 N/M KXY=

KYX= 0.00000E+00 N/M KYY-

CXX- 0.00000E+00 N-S/M CXY-

CYX- 0.00000E+00 N-S/M CYY-

0.00000E+00 N/M

0.10000E+I0 N/M

0.00000E+00 N-S/M

0.00000E+00 N-S/M

GEAR MESH PROPERTIES:

BASE CIRCLE DIAMETER OF GEAR 1...-

BASE CIRCLE DIAMETER OF GEAR 2...-

AVERAGE MESH STIFFNESS ........... =

AVERAGE MESH DAMPING ............. --

0.1270 M

0.2310 M

0.20000E+09 N/M

0.00000E+00 N-S/M

A. FREE VIBRATION ANALYSIS:

FOLLOWING NATURAL FREQUENCIES AND MODESHAPES ARE CALCULATED

FOR THE ABOVE SPECIFIED SYSTEM:
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MODE 1

NATURAL FREQUENCY- 0.0002 (BZ.)

CORRESPONDING MODESHAPES:

DISP. IN Y DISP. IN X ROT. ABOUT Y ROT. ABOUT X ROT. ABOUT Z

-.260E-08 0.000E+00 0.000E+00 -.105E-06 0.599E+01

-.358E-08 0.000E+00 0.000E+00 0.108E-06 0.599E+01

0.119E-08 0.000E+00 0.000E+00 -.411E-07 0.599E+01

-.524E-08 0.000E+00 0.000E+00 -.983E-07 0.599E+01

-.299E-08 0.000E+00 0.000E+00 0.136E-06 0.599E+01

0.771E-08 0.000E+00 0.000E+00 0.499E-06 0.329E+01

0.253E-07 0.000E+00 0.000E+00 0.535E-07 0.329E+01

-.188E-09 0.000E+00 0.000E+00 -.118E-05 0.329E+01

-.256E-07 0.000E+00 0.000E+00 0.557E-07 0.329E+01

-.781E-08 0.000E+00 0.000E+00 0.505E-06 0.329E+01

MODE 2

NATURAL FREQUENCY= 486.0262 (HZ.)

CORRESPONDING MODESHAPES:

DISP. IN Y DISP. IN X ROT. ABOUT Y ROT. ABOUT X ROT. ABOUT Z

0.929E-02 0.000Z+00

0.261E+00 0.000E+00

0.375E+00 0.000E+00

0.261E+00 0.000E+00

0.929E-02 0.000E+00

-.950E-02 0.000E+00

-.918E-01 0.000E+00

-.129E+00 0.000E+00

-.918E-01 0.000E+00

-.950E-02 0.000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

0 000E+00

O.O00E+O0

0.000E+00

0.000E+00

0.000Z+00

0.551E+01 -.646E+01

0.410E+01 -.645E+01

-.I19E-06 -.643E+01

-.410E+01 -.645E+01

-.551E+01 -.646E+01

-.180E+01 0.110E+01

-.134E+01 0.110E+01

0.995E-09 0.109E+01

0.134E+01 0.110E+01

0.180E+01 0.110E+01
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MODE I0

NATURAL FREQUENCY= 2479.9504 (HZ.)

CORRESPONDING MODESHAPES:

DISP. IN Y DISP. IN X ROT. ABOUT Y ROT. ABOUT X ROT. ABOUT Z

0.124E-01 0.000E+00 0.000E+00 0.459E+01 0.978E+01

0.212E+00 0.000E+00 0.000E+00 0.288E+01 0.950E+01

0.279E+00 0.000E+00 0.000E+00 -.897E-10 0.865E+01

0.212E+00 0.000E+00 0.000E+00 -.288E+01 0.950E+01

0.124E-01 0.000E+00 0.000E+00 -.459E+01 0.978E+01

-.990E-02 0.000E+00 0.000E+00 -.134E+01 -.166E+01

-.691E-01 0.000E+00 0.000E+00 -.897E+00 -.162E+01

-.917E-01 0.000E+00 0.000E+00 -.562E-10 -.147E+01

-.691E-01 0.000E+00 0.000E+00 0.897E+00 -.162E+01

-.990E-02 0.000E+00 0.000Z+00 0.134E+01 -.166E+01

B. FORCED VIBRATION ANALYSIS:

FORCED RESPONSE AT THE

0.591142E-04

0.675386E-04

SPECIFIED FREQUENCY RANGE:
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APPENDIX B

DIMENSIONAL AND NON-DIMENSIONAL QUANTITIES

FOR THE EXPERIMENTAL TEST RIGS

Table BI. Dimensionless and dimensional parameters for Kubo's test rig [28].

DIMENSIONAL QUANTITIES

Number of teeth

Igl, Ig2 [kg-m 2 (Ib-ft2)]

rnc_ lkg]

dgl, dg 2 [m (in)]

kb
k h [N/m 0bf/'m)]

Fm IN (lbf)]

[m (in)]

[m (in)]

25/25

0.00115 (0.0278)

0.23

0.094 (3.7)

rigid
3.8E8 (2.17E6)

2295 (1030)

1.92E-6 (7.56E-5)

0. IE-3 (0.0039)

DIMENSIONLESS QUAN'Ilq]_

(page ,14)

Fm (page 44)

Fah (page 44)

Fm/F_

0.1

0.06

0.0192

3.12
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Table B2. Dimensionless and dimensional parameters for Munro's test rig [27].

DIMENSIONAL QUANTITIES

number of tveth 32/32

Isl, Ig 2 [kg-m 2 (lb-ft2)] 0.136 (3.29)

ms], ms2 [kg (lb)] 31.1 (68.5)

dg l, dg 2 [m (in)] 0.2 (8)

bh [m (in)] 0.12E-3 (4.7E-3)

Design Load (DL) 3/4 DL 1/2 DL 1/4DL

Fm [N (lbf/in FW)] 3782 (1700) 2836 (1275) 1891 (850) 947 (425)

k h [N/m ] 3.44E8 3.22E8 3.01E8 2.72E8

% [In] 3.5E-7 1.06E-6 1.78E-6 2.36E-6

DIMENSIONLESS QUANTFFIES

Design Load (DL) 3/4 DL 1/2 DL 1/4 DL

Fm (equation 3.3i) 0.183 0.146 0.105 0.058

Fah (equation 3.3j) 0.0058 0.0178 0.0296 0.0393

K:11,1¢22 (equation 3.3f) 0.950 0.966 0.983 1.007

K:I3, K:23 (equation 3.3g) 0.242 0.242 0.242 0.242

_11, _22 (equation 3.3c) 0.01 0.01 0.01 0.01

_13, _23 (equation 3.3d) 0.00375 0.00375 0.00375 0.00375

_33 (equation 3.3e) 0.015 0.015 0.015 0.015
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APPENDIX C

LENGTH OF TRANSIENT SOLUTION AND CPU TIME

C.I. Length of Transient Solution

It is necessary to run the digital simulation routines for many cycles in order to

reach the steady state solution. This can easily be detected by a time history repeating

itself and a phase plane trajectory followed at each period of the steady state solution.

Following are found to be the major factors which determine the length of the transient

region of the time history:

1. Damping Ratio; Damping ratio is inversely proportional to the time needed to

reach steady state solution. Larger the damping, shorter the transients. Figure B I

shows this relationship for the single degree of freedom model of gear pair. A similar

trend is observed in Multi-degree of freedom model also.

2. Excitation Frequency; The transient solution is found to be longer in the

vicinity of the resonance frequency than the off-resonance region. Figure B 1 compares

length of transient solution versus damping ratio curves corresponding to resonance

and off-resonance excitation frequencies.

3. Initial Conditions; Transients are longer when the initial displacement and

velocity are away from the mean values of the steady state solution sought.

C.2. CPU Times

CPU time needed in digital simulation depends on: i. the number of increments

per period of forcing function (20-40 points per period is good enough), ii. the
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Figure C 1. Length of the transient solution in a gear pair as a function of damping

ratio for off-resonance (D,---0.5) and resonance (_=0.7) frequencies

tolerance of the solution accuracy (lxl0 -5 to lxl0 -9 is acceptable), and iii. number of

degrees of freedom. For the single degree of freedom model with a tolerance of lxl0 -9

and an increment of 20 points/period, nearly 10 sec. of CPU time is required to run for

100 cycles. The three degree of freedom model with same parameters uses 1.2 rain. of

CPU time for 100 cycles.
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APPENDIX D

COMPARISON OF PREDICTIONS WITH NASA MEASUREMENTS

In this section, a comparison of the FEM predictions of the NASA Gear Noise

Test Rig shown in Figure D1 with the measurements of NASA is given. System

parameters and the predicted natural modes of the system have already been given in

Tables 1.1 and 1.2, respectively. The static transmission error and mesh stiffness

variation predictions are also shown in Figure 4.8. Here, the comparison of the

predicted frequency response spectrum with measurements of NASA is limited to

torsional (angular acceleration) vibrations since the set-up was not equipped for

transverse vibration measurements. Only a qualitative agreement is observed between

the predictions and measurements as shown in Figure D2 due to the uncertainties

associated with the sensitivities of instruments and due to the errors involved in

measurement such as resonance and calibration problems of angular transducers.

coupling

/ N_ t°rquemeter l

motor
shaft

F pinion !

-Jgear

gear box

Figure D1. NASA Gear Noise Test Rig.
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Figure D2. Angular acceleration spectrum of the NASA Gear Noise Test Rig at pinion

location; a) measurements b) FEM predictions.
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APPENDIX D

COMPARISON OF PREDICTIONS WITH NASA MEASUREMENTS

In this section, a comparison of the FEM predictions of the NASA Gear Noise

Test Rig shown in Figure D1 with the measurements by NASA is given. System

parameters and the predicted natureal modes of the system have already been given

in Tables 1.1 and 1.2, respectively. The static transmission error and mesh stiffness

variation predictions are also shown in Figure 4.8. Here, the comparison of the predicted

frequency response spectrum with measurements by NASA is limited to torsional

(angular acceleration) vibrations. Only a qualitative agreement is observed between

the predictions and measurements as shown in Figure D2. Quantitative discrepancies

are attributed to the resonance problems experienced with the angular transducers.

coupling

/ N'_ t°rquemeter

shaft ]

pinion

m

L gear

gear box

,_-.-bearing

load

Figure D1. NASA Gear Noise Test Rig.
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